全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

A geometric proof of the Lelong-Poincaré formula

Keywords: Complex analytic manifolds , analytic sets , local parametrization theorem , integration currents , branching coverings

Full-Text   Cite this paper   Add to My Lib

Abstract:

We propose a geometric proof of the fundamental Lelong-Poincaré formula : dd c log |/ | = [/ = 0] where f is any nonzero holomorphic function defined on a complex analytic manifold V and [/ = 0] is the integration current on the divisor of the zeroes of /. Our approach is based, via the local parametrization theorem, on a precise study of the local geometry of the hypersurface given by /. Our proof extends naturally to the meromorphic case.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133