Corn ( Zea mays L.) stover is a potential bioenergy feedstock, but little is known about the impacts of reducing stover return on yield and soil quality in the Northern US Corn Belt. Our study objectives were to measure the impact of three stover return rates (Full (~7.8 Mg ha ?1 yr ?1), Moderate (~3.8 Mg ha ?1 yr ?1) or Low (~1.5 Mg ha yr ?1) Return) on corn and soybean ( Glycine max. L [Merr.]) yields and on soil dynamic properties on a chisel-tilled (Chisel) field, and well- (NT1995) or newly- (NT2005) established no-till managed fields. Stover return rate did not affect corn and soybean yields except under NT1995 where Low Return (2.88 Mg ha ?1) reduced yields compared with Full and Moderate Return (3.13 Mg ha ?1). In NT1995 at 0–5 cm depth, particulate organic matter in Full Return and Moderate Return (14.3 g kg ?1) exceeded Low Return (11.3 g kg ?1). In NT2005, acid phosphatase activity was reduced about 20% in Low Return compared to Full Return. Also the Low Return had an increase in erodible-sized dry aggregates at the soil surface compared to Full Return. Three or fewer cycles of stover treatments revealed little evidence for short-term impacts on crop yield, but detected subtle soil changes that indicate repeated harvests may have negative consequences if stover removed.
References
[1]
USDA National Agriculture Statistics Service. Available online: http://quickstats.nass.usda.gov/ (accessed on 18 December 2012).
[2]
US DOE U.S. Billion-ton update: Biomass supply for a bioenergy and bioproducts industry. R.D. Perlack and b.J. Stokes (leads), ornl/tm-2011/224. Available online: http://www1.eere.energy.gov/biomass/pdfs/billion_ton_update.pdf (accessed on 9 August 2012).
[3]
Perlack, R.D.; Wright, L.L.; Turhollow, A.; Graham, R.L.; Stokes, B.; Erbach, D.C. Biomass as feedstock for a bioenergy and bioproducts industry: The technical feasibility of a billion-ton annual supply. Available online: http://www.eere.energy.gov/biomass/pdfs/final_billionton_vision_report2.pdf (accessed on 6 August 2012).
[4]
BRDB Increasing feedstock production for biofuels: Economic drivers, environmental implications, and the role of research. Available online: http://www.usbiomassboard.gov/pdfs/increasing_feedstock_revised.pdf (accessed on 6 August 2012).
[5]
Johnson, J.M.F.; Papiernik, S.K.; Mikha, M.M.; Spokas, K.A.; Tomer, M.D.; Weyers, S.L. Soil processes and residue harvest management. In Carbon Management, Fuels, and Soil Quality; Lal, R., Stewart, B.A., Eds.; Taylor and Francis, LLC: New York, NY, USA, 2010; pp. 1–44.
[6]
Wilhelm, W.W.; Johnson, J.M.F.; Hatfield, J.L.; Voorhees, W.B.; Linden, D.R. Crop and soil productivity response to corn residue removal: A literature review. Agron. J. 2004, 96, 1–17, doi:10.2134/agronj2004.0001.
[7]
Karlen, D.L.; Birell, S.J.; Hess, J.R. A five-year assessment of corn stover harvest in central iowa, USA. Soil Tillage Res. 2011, 115–116, 47–55, doi:10.1016/j.still.2011.06.006.
[8]
Lindstrom, M.J. Effects of residue harvesting on water runoff, soil erosion and nutrient loss. Agric. Ecosyst. Environ. 1986, 16, 103–112, doi:10.1016/0167-8809(86)90097-6.
[9]
Skidmore, E.L.; Siddoway, F.H. Crop residue requirements to control wind erosion. In Crop Residue Management Systems; Asa Special Publication Number 31; Oschwald, W.R., Stelly, M., Kral, D.M., Nauseef, J.H., Eds.; ASA, CSSA, and SSSA: Madison, WI, USA, 1978; pp. 17–33.
Merrill, S.D.; Black, A.L.; Fryrear, D.W.; Saleh, A.; Zobeck, T.M.; Halvorson, A.D.; Tanaka, D.L. Soil wind erosion hazard of spring wheat-fallow as affected by long-term climate and tillage. Soil Sci. Soc. Am. J. 1999, 63, 1768–1777.
[12]
Chepil, W.S. Properties of soil which influence wind erosion: 11. Dry aggregate structure as an index of erodibility. Soil Sci. 1950, 69, 403–414, doi:10.1097/00010694-195005000-00006.
[13]
Wilhelm, W.W.; Johnson, J.M.F.; Karlen, D.L.; Lightle, D.T. Corn stover to sustain soil organic carbon further constrains biomass supply. Agron. J. 2007, 99, 1665–1667.
[14]
Schrumpf, M.; Schulze, E.D.; Kaiser, K.; Schumacher, J. How accurately can soil organic carbon stocks and stock changes be quantified by soil inventories? Biogeosci. Discuss. 2011, 8, 723–769, doi:10.5194/bgd-8-723-2011.
[15]
VandenBygaart, A.J.; Bremer, E.; McConkey, B.G.; Ellert, B.H.; Janzen, H.H.; Angers, D.A.; Carter, M.R.; Drury, C.F.; Lafond, G.P.; McKenzie, R.H. Impact of sampling depth on differences in soil carbon stocks in long-term agroecosystem experiments. Soil Sci. Soc. Am. J. 2011, 75, 226–234, doi:10.2136/sssaj2010.0099.
[16]
Cambardella, C.A.; Elliot, E.T. Particulate soil organic matter changes across a grassland cultivation sequence. Soil Sci. Soc. Am. J. 1992, 56, 777–783, doi:10.2136/sssaj1992.03615995005600030017x.
[17]
Cambardella, C.A.; Gajda, A.M.; Doran, J.W.; Wienhold, B.J.; Kettler, T.A. Estimation of particulate and total organic matter by weight loss-on-ignition. In Assessment Methods for Soil Carbon; Lal, R., Kimball, J.M., Follet, R.F., Stewart, B.A., Eds.; Lewis Publishers: Boca Raton, FL, USA, 2001; pp. 349–359.
[18]
Hammerbeck, A.L.; Stetson, S.J.; Osborne, S.L.; Schumacher, T.E.; Pikul, J.L., Jr. Corn residue removal impact on soil aggregates in a no-till corn/soybean rotation. Soil Sci. Soc. Am. J. 2012, 4, 1390–1398.
[19]
Kushwaha, C.P.; Tripathi, S.K.; Singh, K.P. Variations in soil microbial biomass and n availability due to residue and tillage management in a dryland rice agroecosystem. Soil Tillage Res. 2000, 56, 153–166, doi:10.1016/S0167-1987(00)00135-5.
CTIC National crop residue management survey conservation tillage data, 2002. Available online: http://www2.ctic.purdue.edu/CTIC/CRM.html (accessed on 6 August 2012).
[22]
West, T.O.; Marland, G.; King, A.W.; Post, W.M.; Jain, A.K.; Andrasko, K. Carbon management response curves: Estimates of temporal soil carbon dynamics. Environ. Manag. 2004, 33, 507–518.
[23]
NOAA-NCDC. Climatography of the United States No. 81: 21 Minnesota; U.S. Department of Commerce National Oceanic and Atmospheric Administration, National Climatic Data Center: Asheville, NC, USA, 2002.
[24]
USDA-SCS. Soil Survey Stevens County, Minnesota; U.S. Department of Agriculture Soil Conservation Service: Washington, DC, USA, 1971.
[25]
Olness, A.E.; Lopez, D.; Archer, D.W.; Cordes, J.; Sweeney, C.; Mattson, N.; Rinke, J.L.; Voorhees, W.B. The ars nitrogen decision aid. Available online: http://www.ars.usda.gov/services/software/download.htm?softwareid=85 (accessed on 6 August 2012).
[26]
Fehr, W.R.; Caviness, C.E.; Burmood, D.T.; Pennington, J.S. Stage of development descriptions of soybeans, glycine max (l.) merrill. Crop Sci. 1971, 11, 929–931, doi:10.2135/cropsci1971.0011183X001100060051x.
[27]
Donald, C.M.; Hamblin, J. The biological yield and harvest index of cereals as an agronomic and plant breeding criteria. Adv. Agron. 1976, 28, 361–405.
[28]
Liebig, M.; Varvel, G.; Honeycutt, W. Chapter 1. Guidelines for site description and soil sampling, processing, analysis, and archiving. In GRACEnet Sampling Protocols; Follett, R., Ed.; USDA-Agricultural Research Service: Washington, DC, USA, 2010; pp. 1–5.
[29]
Burt, R. Nrcs Soil Survey Laboratory Methods Manual Report No. 42, Version 4.0, November 2004; USDA-NRCS: Washington, DC, USA, 2004; p. 700.
[30]
Day, P.R. Report of the committee on physical analyses, 1954–55. Soil Sci. Soc. Am. J. 1956, 20, 167–169, doi:10.2136/sssaj1956.03615995002000020007x.
[31]
Page, A.L.; Miller, R.H.; Keeney, D.R. Methods of Soil Analysis, Part 1. Physical and Mineralogical Methods—Agron. Monogr. No. 9, 2nd ed.; ASA: Madison, WI, USA, 1986.
[32]
Thomas, G.W. Soil ph and soil acidity. In Methods of Soil Analysis, Part 3 Chemical Methods; SSSA Book Series 5; Bigham, J.M., Bartels, J.M., Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Soltanpour, P.N., Tabatabai, M.A., Johnston, C.T., Sumner, M.E., Eds.; SSSA and ASA: Madison, WI, USA, 1996; pp. 475–490.
Bigham, J.M.; Bartels, J.M.; Sparks, D.L.; Page, A.L.; Helmke, P.A.; Loeppert, R.H.; Soltanpour, P.N.; Tabatabai, M.A.; Johnston, C.T.; Sumner, M.E. Methods of Soil Analysis. Part 3 Chemical Methods; SSSA Book Series No. 5; SSSA and ASA: Madison, WI, USA, 1996.
[35]
Gale, W.J.; Cambardella, C.A. Carbon dynamics of surface residue- and root-derived organic matter under simulated no-till. Soil Sci. Soc. Am. J. 2000, 64, 190–195, doi:10.2136/sssaj2000.641190x.
[36]
Schulte, E.E. Recommmended soil organic matter tests. In Recommended Chemical Soil Test Procedures for the North Central Region, Ncr publ. No. 221 (revised); Dahnke, W.C., Ed.; Cooperative Extension Service, North Dakota State University: Fargo, ND, USA, 1988; pp. 29–31.
[37]
Richards, B.K.; Wafter, M.F.; Muck, R.E. Variation in line transect measurements of crop residue cover. J. Soil Water Conserv. 1984, 39, 60–61.
[38]
Laflen, J.M.; Amemiya, M.; Hintz, E.A. Measuring crop residue cover. J. Soil Water Conserv. 1981, 36, 341–343.
[39]
Chepil, W.S. A compact rotary sieve and the importance of dry sieving in physical soil analysis. Soil Sci. Soc. Am. J. 1962, 26, 4–6, doi:10.2136/sssaj1962.03615995002600010002x.
[40]
Pikul, J.L., Jr.; Chilom, G.; Rice, J.; Eynard, A.; Schumacher, T.E.; Nichols, K.; Johnson, J.M.F.; Wright, S.; Caesar, T.; Ellsbury, M. Organic matter and water stability of field aggregates affected by tillage in south dakota. Soil Sci. Soc. Am. J. 2009, 73, 197–206.
[41]
Brookes, P.C.; Landman, A.; Pruden, G.; Jenkinson, D.S. Chloroform fumigation and the release of soil nitrogen: A rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil. Biol. Biochem. 1985, 17, 837–842, doi:10.1016/0038-0717(85)90144-0.
[42]
Vance, E.D.; Brookes, P.C.; Jenkinson, D.S. An extraction method for measuring soil microbial biomass C. Soil Biol. Biochem. 1987, 19, 703–707, doi:10.1016/0038-0717(87)90052-6.
[43]
Wu, J.R.; Jorgensen, G.; Pommerening, B.; Chaussod, R.; Brooke, P.C. Measurement of soil microbial biomass C by fumigation-extraction—An automated procedure. Soil Biol. Biochem. 1990, 25, 1435–1441.
[44]
Jenkinson, D.S. Determination of microbial biomass carbon and nitrogen in soil. In Advances in Nitrogen Cycling in Agricultural Ecosystems; Wilson, J.R., Ed.; CAB, Int: Wallingford, UK, 1988; pp. 368–386.
Cavigelli, M.A.; Robertson, G.P.; Klug, M.J. Fatty acid methyl ester (fame) profiles as measures of soil microbial community structure. Plant Soil 1995, 170, 99–113, doi:10.1007/BF02183058.
[47]
Acosta-Martínez, V.; Zobeck, T.M.; Allen, V. Soil microbial, chemical and physical properties in continuous cotton and integrated crop-livestock systems. Soil Sci. Soc. Am. J. 2004, 68, 1875–1884, doi:10.2136/sssaj2004.1875.
[48]
Tabatabai, M.A. Soil enzymes. In Methods of Soil Analysis. Part 2. Microbiological and Biochemical Properties; SSSA Book Series No. 5; Weaver, R.W., Angle, J.S., Bottomley, P.S., Eds.; SSSA: Madison, WI, USA, 1994; pp. 775–833.
[49]
Parham, J.A.; Deng, S.P. Detection, quantification and characterization of b-glucosaminidase activity in soil. Soil Biol. Biochem. 2000, 32, 1183–1190, doi:10.1016/S0038-0717(00)00034-1.
[50]
SAS Institute, SAS System for Windows, Release 9.2, SAS Inst. Cary, NC, USA, 2009.
[51]
R Development Core Team. R: A Language and Environment for Statistical Computing, Version 2.13.1. Available online: http://www.R-project.org/ (accessed on 6 August 2012).
[52]
Oksanen, J.; Blanchet, F.G.; Kindt, R.; Legendre, P.; Minchin, P.R.; O’Hara, R.B.; Simpson, G.L.; Solymos, P.; Henry, M.; Stevens, H.; Wagner, H. Vegan: Community Ecology Package, R Package, Version 1.17–8. Available online: http://CRAN.R-project.org/package=vegan (accessed on 6 August 2012).
[53]
Rehm, G.W.; Randall, G.W.; Lamb, J.; Eliason, R. Fertilizing corn in minnesota, fo-3790-c. Available online: http://www.extension.umn.edu/distribution/cropsystems/components/DC3790.pdf (accessed on 6 August 2012).
[54]
Power, J.F.; Wilhelm, W.W.; Doran, J.W. Crop residue effects on soil environment and dryland maize and soya bean production. Soil Tillage Res. 1986, 8, 101–111, doi:10.1016/0167-1987(86)90326-0.
Blanco-Canqui, H.; Lal, R. Crop residue removal impacts on soil productivity and environmental quality. Crit. Rev. Plant Sci. 2009, 28, 139–163, doi:10.1080/07352680902776507.
[57]
Johnson, J.M.F.; Allmaras, R.R.; Reicosky, D.C. Estimating source carbon from crop residues, roots and rhizodeposits using the national grain-yield database. Agron. J. 2006, 98, 622–636, doi:10.2134/agronj2005.0179.
[58]
Clay, D.E.; Carlson, C.G.; Clay, S.A.; Reese, C.; Liu, Z.; Chang, J.; Ellsbury, M.M. Theoretical derivation of stable and nonisotopic approaches for assessing soil organic carbon turnover. Agron. J. 2006, 98, 443–450.
[59]
Huggins, D.R.; Allmaras, R.R.; Clapp, C.E.; Lamb, J.A.; Randall, G.W. Corn-soybean sequence and tillage effects on soil carbon dynamics and storage. Soil Sci. Soc. Am. J. 2007, 71, 145–154.
[60]
Cotton, J.; Acosta-Martínez, V.; Moore-Kucera, J.; Burow, G. Early changes due to sorghum biofuel cropping systems in soil microbial communities and metabolic functioning. Biol Fertil Soils 2012, 1–11.
[61]
Stetson, S.J.; Osborne, S.L.; Schumacher, T.E.; Eynard, A.; Chilom, G.; Rice, J.; Nichols, K.A.; Pikul, J.L., Jr. Corn residue removal impact on topsoil organic carbon in a corn-soybean rotation. Soil Sci. Soc. Am. J. 2012, doi:10.2136/sssaj2011.0420.