全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Agronomy  2013 

Biochar Impacts on Soil Physical Properties and Greenhouse Gas Emissions

DOI: 10.3390/agronomy3020313

Keywords: biochar, green house gas (GHG) emissions, soil amendment, soil physical properties, soil quality

Full-Text   Cite this paper   Add to My Lib

Abstract:

Biochar, a co-product of a controlled pyrolysis process, can be used as a tool for sequestering C in soil to offset greenhouse gas (GHG) emissions, and as a soil amendment. Whereas the impacts of biochar application on soil chemical properties are widely known, the research information on soil physical properties is scarce. The objectives of this review are to (i) synthesize available data on soil physical properties and GHG emissions, (ii) offer possible mechanisms related to the biochar-amended soil processes, and (iii) identify researchable priorities. Application rates of 1%–2% (w/w) of biochar can significantly improve soil physical quality in terms of bulk density (BD), and water holding capacity (WHC). However, little data are available on surface area (SA), aggregation stability, and penetration resistance (PR) of biochar-amended soil. While biochar amendment can initially accentuate the flux of carbon dioxide (CO 2), the emission of GHGs may be suppressed over time. A 2-phase complexation hypothesis is proposed regarding the mechanisms of the interaction between soil and biochar.

References

[1]  Lehmann, J.; Joseph, S. Biochar for Environmental Management: Science and Technology; Earthscan: London, UK, 2009.
[2]  Mukherjee, A. Physical and Chemical Properties of a Range of Laboratory-produced Fresh and Aged Biochars. Ph.D. Thesis, University of Florida, Gainesville, FL, USA, 2011.
[3]  Mukherjee, A.; Zimmerman, A.R. Organic carbon and nutrient release from a range of laboratory-produced biochars and biochar-soil mixtures. Geoderma 2012, 193–194, 122–130.
[4]  Mukherjee, A.; Zimmerman, A.R.; Harris, W.G. Surface chemistry variations among a series of laboratory-produced biochars. Geoderma 2011, 163, 247–255, doi:10.1016/j.geoderma.2011.04.021.
[5]  Zimmerman, A.R. Abiotic and microbial oxidation of laboratory-produced black carbon (biochar). Environ. Sci. Technol. 2010, 44, 1295–1301, doi:10.1021/es903140c.
[6]  Zimmerman, A.R. Environmental stability of biochar. In Biochar and Soil Biota; Ladygina, N., Rineau, F., Eds.; CRC Press: Boca Raton, FL, USA, 2012.
[7]  Skjemstad, J.O.; Clarke, P.; Taylor, J.A.; Oades, J.M.; McClure, S.G. The chemistry and nature of protected carbon in soil. Aust. J. Soil Res. 1996, 34, 251–271, doi:10.1071/SR9960251.
[8]  Schmidt, M.W.I.; Noack, A.G. Black carbon in soils and sediments: Analysis, distribution, implications, and current challenges. Glob. Biogeochem. Cycles 2000, 14, 777–793, doi:10.1029/1999GB001208.
[9]  Glaser, B.; Haumaier, L.; Guggenberger, G.; Zech, W. The ‘terra preta’ phenomenon: A model for sustainable agriculture in the humid tropics. Naturwissenschaften 2001, 88, 37–41, doi:10.1007/s001140000193.
[10]  Kuhlbusch, T.A.J. Black carbon and the carbon cycle. Science 1998, 280, 1903–1904, doi:10.1126/science.280.5371.1903.
[11]  Rumpel, C.; Alexis, M.; Chabbi, A.; Chaplot, V.; Rasse, D.P.; Valentin, C.; Mariotti, A. Black carbon contribution to soil organic matter composition in tropical sloping land under slash and burn agriculture. Geoderma 2006, 130, 35–46, doi:10.1016/j.geoderma.2005.01.007.
[12]  McCann, J.M.; Woods, W.I.; Meyer, D.W. Organic matter and Anthrosols in Amazonia: interpreting the Amerindian legacy. In Sustainable Management of Soil Organic Matter; Rees, R.M., Ball, B.C., Campbell, D.C., Watson, C.A., Eds.; CAB International: Wallingford, UK, 2001; pp. 180–189.
[13]  Smith, N.J.H. Anthrosols and human carrying capacity in amazonia. Ann. Assoc. Am. Geogr. 1980, 70, 553–566, doi:10.1111/j.1467-8306.1980.tb01332.x.
[14]  Smith, N.J.H. The Amazon River Forest: A Natural History of Plants, Animals, and People; Oxford University Press: New York, NY, USA, 1999.
[15]  Woods, W.I.; McCann, J.M. The Anthropogenic Origin and Persistence of Amazonian dark earths. In The Yearbook of the Conference of Latin American Geographers; University of Texas Press: Austin, TX, USA, 1999; Volume 25, pp. 7–14.
[16]  Sombroek, W.G. Amazon Soils—A Reconnaissance of Soils of the Brazilian Amazon Region; Centre for Agricultural Publications and Documentation: Wageningen, The Netherlands, 1966; p. 292.
[17]  Kampf, N.; Woods, W.; Sombroek, W.; Kern, D.; Cunha, T. Classification of Amazonian Dark Earths and other Ancient Anthropic Soils. In Amazonian Dark Earths; Lehmann, J., Kern, D.C., Glaser, B., Woods, W.I., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2004; pp. 77–102.
[18]  Costa, M.L.D.; Kern, D.C.; Pinto, A.H.E.; Souza, J.R.d.T. The ceramic artifacts in archaeological black earth (terra preta) from Lower Amazon region, Brazil: Mineralogy. Acta Amazonica 2004, 34, 165–178, doi:10.1590/S0044-59672004000200004.
[19]  Solomon, D.; Lehmann, J.; Thies, J.; Schafer, T.; Liang, B.; Kinyangi, J.; Neves, E.; Petersen, J.; Luizao, F.; Skjemstad, J. Molecular signature and sources of biochemical recalcitrance of organic C in Amazonian Dark Earths. Geochimica et Cosmochimica Acta 2007, 71, 2285–2298, doi:10.1016/j.gca.2007.02.014.
[20]  Glaser, B.; Birk, J.J. State of the scientific knowledge on properties and genesis of Anthropogenic Dark Earths in Central Amazonia (terra preta de índio). Geochimica et Cosmochimica Acta 2012, 82, 39–51, doi:10.1016/j.gca.2010.11.029.
[21]  Glaser, B.; Lehmann, J.; Zech, W. Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal—A review. Biol. Fertil. Soils 2002, 35, 219–230.
[22]  Lehmann, J.; Rillig, M.C.; Thies, J.; Masiello, C.A.; Hockaday, W.C.; Crowley, D. Biochar effects on soil biota—A review. Soil Biol. Biochem. 2011, 43, 1812–1836, doi:10.1016/j.soilbio.2011.04.022.
[23]  Fowles, M. Black carbon sequestration as an alternative to bioenergy. Biomass Bioenerg. 2007, 31, 426–432.
[24]  Lehmann, J. Bio-energy in the black. Front. Ecol. Environ. 2007, 5, 381–387, doi:10.1890/1540-9295(2007)5[381:BITB]2.0.CO;2.
[25]  Lehmann, J.; Gaunt, J.; Rondon, M. Bio-char sequestration in terrestrial ecosystems—A review. Mitig. Adapt. Strateg. Glob. Change 2006, 11, 395–419, doi:10.1007/s11027-005-9006-5.
[26]  Berglund, O.; Berglund, K. Influence of water table level and soil properties on emissions of greenhouse gases from cultivated peat soil. Soil Biol. Biochem. 2011, 43, 923–931, doi:10.1016/j.soilbio.2011.01.002.
[27]  Atkinson, C.J.; Fitzgerald, J.D.; Hipps, N.A. Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: A review. Plant Soil 2010, 337, 1–18.
[28]  Hammes, K.; Schmidt, M. Changes in Biochar in Soil. In Biochar for Environmental Management: Science and Technology; Lehmann, J., Joseph, S., Eds.; Earthscan: London, UK, 2009; pp. 169–182.
[29]  Rondon, M.; Ramirez, J.; Lehmann, J. Charcoal Additions Reduce Net Emissions of Greenhouse Gases to the Atmosphere. In Proceedings of the 3rd USDA Symposium on Greenhouse Gases and Carbon Sequestration, Baltimore, MD, USA, 21–24 March 2005; p. 208.
[30]  Spokas, K.A.; Koskinen, W.C.; Baker, J.M.; Reicosky, D.C. Impacts of woodchip biochar additions on greenhouse gas production and sorption/degradation of two herbicides in a minnesota soil. Chemosphere 2009, 77, 574–581, doi:10.1016/j.chemosphere.2009.06.053.
[31]  Spokas, K.A.; Reicosky, D.C. Impacts of sixteen different biochars on soil greenhouse gas production. Ann. Environ. Sci. 2009, 3, 179–193.
[32]  Van Zwieten, L.; Singh, B.; Joseph, S.; Kimber, S.; Cowie, A.; Yin Chan, K. Biochar and Emissions of Non-CO2 Greenhouse Gases from Soil. In Biochar for Environmental Management; Lehmann, J., Joseph, S., Eds.; Earthscan: London Sterling, VA, USA, 2009.
[33]  Di Blasi, C.; Signorelli, G.; Di Russo, C.; Rea, G. Product distribution from pyrolysis of wood and agricultural residues. Ind. Eng. Chem. Res. 1999, 38, 2216–2224, doi:10.1021/ie980711u.
[34]  Manya, J.J. Pyrolysis for biochar purposes: A review to establish current knowledge gaps and research needs. Environ. Sci. Technol. 2012, 46, 7939–7954, doi:10.1021/es301029g.
[35]  Zimmerman, A.R.; Gao, B.; Ahn, M.Y. Positive and negative carbon mineralization priming effects among a variety of biochar-amended soils. Soil Biol. Biochem. 2011, 43, 1169–1179, doi:10.1016/j.soilbio.2011.02.005.
[36]  Braida, W.J.; Pignatello, J.J.; Lu, Y.; Ravikovitch, P.I.; Neimark, A.V.; Xing, B. Sorption hysteresis of benzene in charcoal particles. Environ. Sci. Technol. 2003, 37, 409–417, doi:10.1021/es020660z.
[37]  Nguyen, T.H.; Brown, R.A.; Ball, W.P. An evaluation of thermal resistance as a measure of black carbon content in diesel soot, wood char, and sediment. Org. Geochem. 2004, 35, 217–234, doi:10.1016/j.orggeochem.2003.09.005.
[38]  Rutherford, D.W.; Wershaw, R.L.; Cox, L.G. Changes in Composition and Porosity Occurring during the Thermal Degradation of Wood and Wood Components; 2004-5292; U.S. Department of the Interior, U.S. Geological Survey: Denver, CO, USA, 2004; p. 88.
[39]  Sweatman, M.B.; Quirke, N. Characterization of porous materials by gas adsorption: Comparison of nitrogen at 77 k and carbon dioxide at 298 k for activated carbon. Langmuir 2001, 17, 5011–5020, doi:10.1021/la010308j.
[40]  Jagiello, J.; Thommes, M. Comparison of DFT characterization methods based on N2, Ar, CO2, and H2 adsorption applied to carbons with various pore size distributions. Carbon 2004, 42, 1227–1232, doi:10.1016/j.carbon.2004.01.022.
[41]  Rouquerol, J.; Avnir, D.; Fairbridge, C.W.; Everett, D.H.; Haynes, J.M.; Pernicone, N.J.D.; Ramsay, F.; Sing, K.S.W.; Unger, K.K. Recommendations for the characterization of porous solids. Pure Appl. Chem. 1994, 66, 1739–1758, doi:10.1351/pac199466081739.
[42]  Zdravkov, B.D.; ?ermák, J.J.; ?efara, M.; Jank?, J. Pore classification in the characterization of porous materials: A perspective. Cent. Eur. J. Chem. 2007, 5, 385–395, doi:10.2478/s11532-007-0017-9.
[43]  Pattaraprakorn, W.; Nakamura, R.; Aida, T.; Niiyama, H. Adsorption of CO2 and N2 onto charcoal treated at different temperatures. J. Chem. Eng. Jpn. 2005, 38, 366–372, doi:10.1252/jcej.38.366.
[44]  Wang, X.; Sato, T.; Xing, B. Competitive sorption of pyrene on wood chars. Environ. Sci. Technol. 2006, 40, 3267–3272, doi:10.1021/es0521977.
[45]  Hammes, K.; Smernik, R.J.; Skjemstad, J.O.; Herzog, A.; Vogt, U.F.; Schmidt, M.W.I. Synthesis and characterisation of laboratory-charred grass straw (Oryza sativa) and chestnut wood (Castanea sativa) as reference materials for black carbon quantification. Org. Geochem. 2006, 37, 1629–1633, doi:10.1016/j.orggeochem.2006.07.003.
[46]  Fernandes, M.B.; Skjemstad, J.O.; Johnson, B.B.; Wells, J.D.; Brooks, P. Characterization of carbonaceous combustion residues. I. Morphological, elemental and spectroscopic features. Chemosphere 2003, 51, 785–795, doi:10.1016/S0045-6535(03)00098-5.
[47]  Aarna, I.; Suuberg, E.M. Changes in Reactive Surface Area and Porosity During Char Oxidation. In Proceedings of the 27th Symposium (International) on Combustionthe Combustion SymposiumUniversity of Colorado, Boulder, CO, USA, 2–7 August 1998; pp. 2933–2939.
[48]  Brown, R.A.; Kercher, A.K.; Nguyen, T.H.; Nagle, D.C.; Ball, W.P. Production and characterization of synthetic wood chars for use as surrogates for natural sorbents. Org. Geochem. 2006, 37, 321–333.
[49]  Lua, A.C.; Guo, J. Preparation and characterization of chars from oil palm waste. Carbon 1998, 36, 1663–1670, doi:10.1016/S0008-6223(98)00161-4.
[50]  Pulido-Novicio, L.; Hata, T.; Kurimoto, Y.; Doi, S.; Ishihara, S.; Imamura, Y. Adsorption capacities and related characteristics of wood charcoals carbonized using a one-step or two-step process. J. Wood Sci. 2001, 47, 48–57, doi:10.1007/BF00776645.
[51]  Lewis, A.C. Production and Characterization of Structural Active Carbon from Wood Precursors; The Johns Hopkins University: Baltimore, MD, USA, 1999.
[52]  Boateng, A.A. Characterization and thermal conversion of charcoal derived from fluidized-bed fast pyrolysis oil production of switchgrass. Ind. Eng. Chem. Res. 2007, 46, 8857–8862, doi:10.1021/ie071054l.
[53]  Forbes, M.S.; Raison, R.J.; Skjemstad, J.O. Formation, transformation and transport of black carbon (charcoal) in terrestrial and aquatic ecosystems. Sci. Total Environ. 2006, 370, 190–206, doi:10.1016/j.scitotenv.2006.06.007.
[54]  Goldberg, E.D. Black Carbon in the Environment: Properties and Distribution; John Wiley and Sons: New York, NY, USA, 1985.
[55]  Koelmans, A.A.; Jonker, M.T.O.; Cornelissen, G.; Bucheli, T.D.; Van Noort, P.C.M.; Gustafsson, O. Black carbon: The reverse of its dark side. Chemosphere 2006, 63, 365–377, doi:10.1016/j.chemosphere.2005.08.034.
[56]  Lohmann, R.; MacFarlane, J.K.; Gschwend, P.M. Importance of black carbon to sorption of native PAHs, PCBs, and PCDDs in Boston and New York, harbor sediments. Environ. Sci. Technol. 2005, 39, 141–148, doi:10.1021/es049424+.
[57]  Madhavi Latha, K.; Badarinath, K.V.S. Environmental pollution due to black carbon aerosols and its impacts in a tropical urban city. J. Quant. Spectrosc. Radiat. Transf. 2005, 92, 311–319.
[58]  Mattson, J.S.; Mark, H.B. Activated Carbon; Marcel Dekker: New York, NY, USA, 1971; p. 237.
[59]  Pignatello, J.J.; Kwon, S.; Lu, Y.F. Effect of natural organic substances on the surface and adsorptive properties of environmental black carbon (char): Attenuation of surface activity by humic and fulvic acids. Environ. Sci. Technol. 2006, 40, 7757–7763, doi:10.1021/es061307m.
[60]  Hammes, K.; Torn, M.S.; Lapenas, A.G.; Schmidt, M.W.I. Centennial black carbon turnover observed in a Russian steppe soil. Biogeosciences 2008, 5, 1339–1350, doi:10.5194/bg-5-1339-2008.
[61]  Leifeld, J.; Fenner, S.; Muller, M. Mobility of black carbon in drained peatland soils. Biogeosciences 2007, 4, 425–432, doi:10.5194/bg-4-425-2007.
[62]  Major, J.; Lehmann, J.; Rondon, M.; Goodale, C. Fate of soil-applied black carbon: Downward migration, leaching and soil respiration. Glob. Change Biol. 2010, 16, 1366–1379, doi:10.1111/j.1365-2486.2009.02044.x.
[63]  Major, J.; Rondon, M.; Molina, D.; Riha, S.J.; Lehmann, J. Maize yield and nutrition during 4 years after biochar application to a colombian savanna oxisol. Plant Soil 2010, 333, 117–128, doi:10.1007/s11104-010-0327-0.
[64]  Skjemstad, J.O.; Taylor, J.A.; Janik, L.J.; Marvanek, S.P. Soil organic carbon dynamics under long-term sugarcane monoculture. Aust. J. Soil Res. 1999, 37, 151–164, doi:10.1071/S98051.
[65]  Glaser, B.; Zech, W.; Woods, W.I. History, Current Knowledge and Future Perspectives of Geoecological Research Concerning the Origin of Amazonian Anthropogenic Dark Earths (terra preta). In Amazonian Dark Earths: Explorations in Space and Time; Glaser, B., Woods, W.I., Eds.; Springer: New York, NY, USA, 2004.
[66]  Liang, B.; Lehmann, J.; Solomon, D.; Kinyangi, J.; Grossman, J.; O’Neill, B.; Skjemstad, J.O.; Thies, J.; Luizao, F.J.; Petersen, J.; et al. Black carbon increases cation exchange capacity in soils. Soil Sci. Soc. Am. J. 2006, 70, 1719–1730.
[67]  Laird, D.A.; Fleming, P.; Davis, D.D.; Horton, R.; Wang, B.Q.; Karlen, D.L. Impact of biochar amendments on the quality of a typical midwestern agricultural soil. Geoderma 2010, 158, 443–449, doi:10.1016/j.geoderma.2010.05.013.
[68]  Jones, B.E.H.; Haynes, R.J.; Phillips, I.R. Effect of amendment of bauxite processing sand with organic materials on its chemical, physical and microbial properties. J. Environ. Manag. 2010, 91, 2281–2288, doi:10.1016/j.jenvman.2010.06.013.
[69]  Dempster, D.N.; Gleeson, D.B.; Solaiman, Z.M.; Jones, D.L.; Murphy, D.V. Decreased soil microbial biomass and nitrogen mineralisation with eucalyptus biochar addition to a coarse textured soil. Plant Soil 2012, 354, 311–324, doi:10.1007/s11104-011-1067-5.
[70]  Karhu, K.; Mattila, T.; Bergstr?m, I.; Regina, K. Biochar addition to agricultural soil increased CH4 uptake and water holding capacity—Results from a short-term pilot field study. Agric. Ecosyst. Environ. 2011, 140, 309–313, doi:10.1016/j.agee.2010.12.005.
[71]  Chen, H.-X.; Du, Z.-L.; Guo, W.; Zhang, Q.-Z. Effects of biochar amendment on cropland soil bulk density, cation exchange capacity, and particulate organic matter content in the North China plain. Yingyong Shengtai Xuebao 2011, 22, 2930–2934.
[72]  Rogovska, N.; Laird, D.; Cruse, R.; Fleming, P.; Parkin, T.; Meek, D. Impact of biochar on manure carbon stabilization and greenhouse gas emissions. Soil Sci. Soc. Am. J. 2011, 75, 871–879.
[73]  Mankasingh, U.; Choi, P.C.; Ragnarsdottir, V. Biochar application in a tropical, agricultural region: A plot scale study in Tamil Nadu, India. Appl. Geochem. 2011, 26, S218–S221, doi:10.1016/j.apgeochem.2011.03.108.
[74]  Zhang, A.F.; Bian, R.J.; Pan, G.X.; Cui, L.Q.; Hussain, Q.; Li, L.Q.; Zheng, J.W.; Zheng, J.F.; Zhang, X.H.; Han, X.J.; et al. Effects of biochar amendment on soil quality, crop yield and greenhouse gas emission in a chinese rice paddy: A field study of 2 consecutive rice growing cycles. Field Crops Res. 2012, 127, 153–160, doi:10.1016/j.fcr.2011.11.020.
[75]  Busscher, W.J.; Novak, J.M.; Ahmedna, M. Physical effects of organic matter amendment of a southeastern us coastal loamy sand. Soil Sci. 2011, 176, 661–667.
[76]  Novak, J.M.; Busscher, W.J.; Watts, D.W.; Amonette, J.E.; Ippolito, J.A.; Lima, I.M.; Gaskin, J.; Das, K.C.; Steiner, C.; Ahmedna, M.; et al. Biochars impact on soil-moisture storage in an ultisol and two aridisols. Soil Sci. 2012, 177, 310–320.
[77]  George, C.; Wagner, M.; Kucke, M.; Rillig, M.C. Divergent consequences of hydrochar in the plant-soil system: Arbuscular mycorrhiza, nodulation, plant growth and soil aggregation effects. Appl. Soil Ecol. 2012, 59, 68–72, doi:10.1016/j.apsoil.2012.02.021.
[78]  Busscher, W.J.; Novak, J.M.; Evans, D.E.; Watts, D.W.; Niandou, M.A.S.; Ahmedna, M. Influence of pecan biochar on physical properties of a norfolk loamy sand. Soil Sci. 2010, 175, 10–14.
[79]  Peng, X.; Ye, L.L.; Wang, C.H.; Zhou, H.; Sun, B. Temperature- and duration-dependent rice straw-derived biochar: Characteristics and its effects on soil properties of an ultisol in southern china. Soil Tillage Res. 2011, 112, 159–166, doi:10.1016/j.still.2011.01.002.
[80]  Brodowski, S.; John, B.; Flessa, H.; Amelung, W. Aggregate-occluded black carbon in soil. Eur. J. Soil Sci. 2006, 57, 539–546.
[81]  Piccolo, A.; Mbagwu, J.S.C. Effects of humic substances and surfactants on the stability of soil aggregates. Soil Sci. 1989, 147, 47–54.
[82]  Mukherjee, A.; Hamdan, R.; Cooper, W.T.; Zimmerman, A.R. A chemical comparison of freshly-produced and field-aged biochars and biochar-amended soils. Chemosphere 2013. submitted.
[83]  Kudeyarova, A.Y. Application of basic chemical concepts to understanding the formation and transformation mechanisms of humic substances: A revue of publications and own experimental data. Eurasian Soil Sci. 2007, 40, 934–948.
[84]  Mackowiak, C.L.; Grossl, P.R.; Bugbee, B.G. Beneficial effects of humic acid on micronutrient availability to wheat. Soil Sci. Soc. Am. J. 2001, 65, 1744–1750.
[85]  Motojima, H.; Yamada, P.; Irie, M.; Ozaki, M.; Shigemori, H.; Isoda, H. Amelioration effect of humic acid extracted from solubilized excess sludge on saline-alkali soil. J. Mater. Cycles Waste Manag. 2012, 14, 169–180, doi:10.1007/s10163-012-0056-y.
[86]  Cheng, C.H.; Lehmann, J. Ageing of black carbon along a temperature gradient. Chemosphere 2009, 75, 1021–1027, doi:10.1016/j.chemosphere.2009.01.045.
[87]  Cheng, C.H.; Lehmann, J.; Engelhard, M.H. Natural oxidation of black carbon in soils: Changes in molecular form and surface charge along a climosequence. Geochimica Et Cosmochimica Acta 2008, 72, 1598–1610, doi:10.1016/j.gca.2008.01.010.
[88]  Uzoma, K.C.; Inoue, M.; Andry, H.; Zahoor, A.; Nishihara, E. Influence of biochar application on sandy soil hydraulic properties and nutrient retention. J. Food Agric. Environ. 2011, 9, 1137–1143.
[89]  Piccolo, A.; Pietramellara, G.; Mbagwu, J.S.C. Effects of coal derived humic substances on water retention and structural stability of mediterranean soils. Soil Use Manag. 1996, 12, 209–213, doi:10.1111/j.1475-2743.1996.tb00545.x.
[90]  Tryon, E.H. Effect of charcoal on certain physical, chemical, and biological properties of forest soils. Ecol. Monogr. 1948, 18, 81–115, doi:10.2307/1948629.
[91]  Briggs, C.; Breiner, J.M.; Graham, R.C. Physical and chemical properties of pinus ponderosa charcoal: Implications for soil modification. Soil Sci. 2012, 177, 263–268.
[92]  Case, S.D.C.; McNamara, N.P.; Reay, D.S.; Whitaker, J. The effect of biochar addition on N2O and CO2 emissions from a sandy loam soil—The role of soil aeration. Soil Biol. Biochem. 2012, 51, 125–134, doi:10.1016/j.soilbio.2012.03.017.
[93]  Lal, R. Soil carbon sequestration to mitigate climate change. Geoderma 2004, 123, 1–22, doi:10.1016/j.geoderma.2004.01.032.
[94]  Lal, R. Carbon sequestration. Philos. Trans. R. Soc. B Biol. Sci. 2008, 363, 815–830, doi:10.1098/rstb.2007.2185.
[95]  da Silva, L.S.; Griebeler, G.; Moterle, D.F.; Bayer, C.; Zschornack, T.; Pocojeski, E. Dynamics of methane emission from flodded rice soils in southern brazil. Revista Brasileira De Ciencia Do Solo 2011, 35, 473–481, doi:10.1590/S0100-06832011000200016.
[96]  Gogoi, B.; Baruah, K.K. Nitrous oxide emissions from fields with different wheat and rice varieties. Pedosphere 2012, 22, 112–121, doi:10.1016/S1002-0160(11)60197-5.
[97]  Luo, L.-G.; Kondo, M.; Itoh, S. N2O and CH4 emission from japan rice fields under different long–term fertilization patterns and its environmental impact. Yingyong Shengtai Xuebao 2010, 21, 3200–3206.
[98]  Minamikawa, K.; Hayakawa, A.; Nishimura, S.; Akiyama, H.; Yagi, K. Comparison of indirect nitrous oxide emission through lysimeter drainage between an andosol upland field and a fluvisol paddy field. Soil Sci. Plant Nutr. 2011, 57, 843–854, doi:10.1080/00380768.2011.635427.
[99]  Neue, H.U.; Wassmann, R.; Lantin, R.S.; Alberto, M.; Aduna, J.B.; Javellana, A.M. Factors affecting methane emission from rice fields. Atmos. Environ. 1996, 30, 1751–1754.
[100]  Yagi, K.; Minami, K. Effect of organic-matter application on methane emission from some japanese paddy fields. Soil Sci. Plant Nutr. 1990, 36, 599–610, doi:10.1080/00380768.1990.10416797.
[101]  Yao, Z.; Zheng, X.; Dong, H.; Wang, R.; Mei, B.; Zhu, J. A 3-year record of N2O and CH4 emissions from a sandy loam paddy during rice seasons as affected by different nitrogen application rates. Agric. Ecosyst. Environ. 2012, 152, 1–9, doi:10.1016/j.agee.2012.02.004.
[102]  Jones, D.L.; Murphy, D.V.; Khalid, M.; Ahmad, W.; Edwards-Jones, G.; DeLuca, T.H. Short-term biochar-induced increase in soil CO2 release is both biotically and abiotically mediated. Soil Biol. Biochem. 2011, 43, 1723–1731, doi:10.1016/j.soilbio.2011.04.018.
[103]  Bruun, E.W.; Ambus, P.; Egsgaard, H.; Hauggaard-Nielsen, H. Effects of slow and fast pyrolysis biochar on soil C and N turnover dynamics. Soil Biol. Biochem. 2012, 46, 73–79, doi:10.1016/j.soilbio.2011.11.019.
[104]  Scheer, C.; Grace, P.R.; Rowlings, D.W.; Kimber, S.; Van Zwieten, L. Effect of biochar amendment on the soil-atmosphere exchange of greenhouse gases from an intensive subtropical pasture in northern new south wales, australia. Plant Soil 2011, 345, 47–58.
[105]  Wardle, D.A.; Nilsson, M.C.; Zackrisson, O. Fire-derived charcoal causes loss of forest humus. Science 2008, 320, 629–629.
[106]  Singh, B.P.; Hatton, B.J.; Singh, B.; Cowie, A.L.; Kathuria, A. Influence of biochars on nitrous oxide emission and nitrogen leaching from two contrasting soils. J. Environ. Qual. 2010, 39, 1224–1235.
[107]  Lehmann, J.; Sohi, S. Comment on “Fire-derived charcoal causes loss of forest humus”. Science 2008, 321, 1295, doi:10.1126/science.1160005.
[108]  Wardle, D.A.; Nilsson, M.C.; Zackrisson, O. Response to comment on “Fire-derived charcoal causes loss of forest humus”. Science 2008, 321, 629–629.
[109]  Castaldi, S.; Riondino, M.; Baronti, S.; Esposito, F.R.; Marzaioli, R.; Rutigliano, F.A.; Vaccari, F.P.; Miglietta, F. Impact of biochar application to a mediterranean wheat crop on soil microbial activity and greenhouse gas fluxes. Chemosphere 2011, 85, 1464–1471, doi:10.1016/j.chemosphere.2011.08.031.
[110]  Yanai, Y.; Toyota, K.; Okazaki, M. Effects of charcoal addition on N2O emissions from soil resulting from rewetting air-dried soil in short-term laboratory experiments. Soil Sci. Plant Nutr. 2007, 53, 181–188, doi:10.1111/j.1747-0765.2007.00123.x.
[111]  Smith, J.L.; Collins, H.P.; Bailey, V.L. The effect of young biochar on soil respiration. Soil Biol. Biochem. 2010, 42, 2345–2347, doi:10.1016/j.soilbio.2010.09.013.
[112]  Liu, Y.X.; Yang, M.; Wu, Y.M.; Wang, H.L.; Chen, Y.X.; Wu, W.X. Reducing CH4 and CO2 emissions from waterlogged paddy soil with biochar. J. Soils Sediments 2011, 11, 930–939, doi:10.1007/s11368-011-0376-x.
[113]  Rondon, M.; Molina, D.; Hurtado, M.; Ramirez, J.; Lehmann, J.; Major, J.; Amezquita, E. Enhancing the Productivity of Crops and Grasses While Reducing Greenhouse Gas Emissions through Bio-Char Amendments to Unfertile Tropical Soils. In Proceedings of the 18th World Congress of Soil Science, Philadelphia, PA, USA, 9–15 July 2006.
[114]  van Zwieten, L.; Kimber, S.; Morris, S.; Downie, A.; Berger, E.; Rust, J.; Scheer, C. Influence of biochars on flux of N2O and CO2 from ferrosol. Soil Res. 2010, 48, 555–568, doi:10.1071/SR10004.
[115]  Hilscher, A.; Heister, K.; Siewert, C.; Knicker, H. Mineralisation and structural changes during the initial phase of microbial degradation of pyrogenic plant residues in soil. Org. Geochem. 2009, 40, 332–342.
[116]  Khalil, K.; Mary, B.; Renault, P. Nitrous oxide production by nitrification and denitrification in soil aggregates as affected by O2 concentration. Soil Biol. Biochem. 2004, 36, 687–699, doi:10.1016/j.soilbio.2004.01.004.
[117]  Wrage, N.; Groenigen, J.W.V.; Oenema, O.; Baggs, E.M. A novel dual-isotope labelling method for distinguishing between soil sources of N2O. Rapid Commun. Mass Spectrom. 2005, 19, 3298–3306, doi:10.1002/rcm.2191.
[118]  Gillam, K.M.; Zebarth, B.J.; Burton, D.L. Nitrous oxide emissions from denitrification and the partitioning of gaseous losses as affected by nitrate and carbon addition and soil aeration. Can. J. Soil Sci. 2008, 88, 133–143.
[119]  Spokas, K.; Baker, J.; Reicosky, D. Ethylene: Potential key for biochar amendment impacts. Plant Soil 2010, 333, 443–452, doi:10.1007/s11104-010-0359-5.
[120]  Dobbie, K.E.; Smith, K.A. The effects of temperature, water-filled pore space and land use on N2O emissions from an imperfectly drained gleysol. Eur. J. Soil Sci. 2001, 52, 667–673.
[121]  Khalil, M.I.; Baggs, E.M. CH4 oxidation and N2O emissions at varied soil water-filled pore spaces and headspace CH4 concentrations. Soil Biol. Biochem. 2005, 37, 1785–1794, doi:10.1016/j.soilbio.2005.02.012.
[122]  Von Fischer, J.C.; Butters, G.; Duchateau, P.C.; Thelwell, R.J.; Siller, R. In situ measures of methanotroph activity in upland soils: A reaction-diffusion model and field observation of water stress. J. Geophys. Res. 2009, 114, G01015, doi:10.1029/2008JG000731.
[123]  Dalal, R.C.; Allen, D.E. Turner review No. 18. Greenhouse gas fluxes from natural ecosystems. Aust. J. Bot. 2008, 56, 369–407.
[124]  Chun, Y.; Sheng, G.Y.; Chiou, C.T.; Xing, B.S. Compositions and sorptive properties of crop residue-derived chars. Environ. Sci. Technol. 2004, 38, 4649–4655.
[125]  Mukherjee, A.; Zimmerman, A.R. Organic carbon and nutrient release from a range of laboratory-produced biochars and biochar-soil mixtures. Geoderma 2013, 193–194, 122–130, doi:10.1016/j.geoderma.2012.10.002.
[126]  Brady, N.C.; Weil, R.R. The Nature and Properties of Soils; Macmillan: New York, NY, USA, 1984.
[127]  Cheng, C.H.; Lehmann, J.; Thies, J.E.; Burton, S.D.; Engelhard, M.H. Oxidation of black carbon by biotic and abiotic processes. Org. Geochem. 2006, 37, 1477–1488.
[128]  Joseph, S.D.; Camps-Arbestain, M.; Lin, Y.; Munroe, P.; Chia, C.H.; Hook, J.; van Zwieten, L.; Kimber, S.; Cowie, A.; Singh, B.P.; Lehmann, J.; Foidl, N.; Smernik, R.J.; Amonette, J.E. An investigation into the reactions of biochar in soil. Aust. J. Soil Res. 2010, 48, 501–515, doi:10.1071/SR10009.
[129]  Lin, Y.; Munroe, P.; Joseph, S.; Kimber, S.; Van Zwieten, L. Nanoscale organo-mineral reactions of biochars in ferrosol: An investigation using microscopy. Plant Soil 2012, 357, 369–380, doi:10.1007/s11104-012-1169-8.
[130]  Kleber, M.; Sollins, P.; Sutton, R. A conceptual model of organo-mineral interactions in soils: Self-assembly of organic molecular fragments into zonal structures on mineral surfaces. Biogeochemistry 2007, 85, 9–24, doi:10.1007/s10533-007-9103-5.
[131]  Rutherford, D.W.; Wershaw, R.L.; Reeves, J.B. Development of Acid Functional Groups and Lactones during the Thermal Degradation of Wood and Wood Components, 2007-5013; U.S. Department of the Interior, U.S.; Geological Survey: Denver, CO, USA, 2008; p. 52.
[132]  Baldock, J.A.; Smernik, R.J. Chemical composition and bioavailability of thermally, altered pinus resinosa (red pine) wood. Org. Geochem. 2002, 33, 1093–1109.
[133]  Czimczik, C.I.; Preston, C.M.; Schmidt, M.W.I.; Werner, R.A.; Schulze, E.D. Effects of charring on mass, organic carbon, and stable carbon isotope composition of wood. Org. Geochem. 2002, 33, 1207–1223, doi:10.1016/S0146-6380(02)00137-7.
[134]  Novak, J.M.; Busscher, W.J.; Laird, D.L.; Ahmedna, M.; Watts, D.W.; Niandou, M.A.S. Impact of biochar amendment on fertility of a southeastern coastal plain soil. Soil Sci. 2009, 174, 105–112.
[135]  Kuzyakov, Y.; Subbotina, I.; Chen, H.Q.; Bogomolova, I.; Xu, X.L. Black carbon decomposition and incorporation into soil microbial biomass estimated by C-14 labeling. Soil Biol. Biochem. 2009, 41, 210–219, doi:10.1016/j.soilbio.2008.10.016.
[136]  Singh, B.P.; Cowie, A.L. A Novel Approach, Using 13C Natural Abundance, for Measuring Decomposition of Biochars in Soil. In Proceedings of the Carbon and Nutrient Management in Agriculture, Fertilizer and Lime Research Centre Workshop, Massey University, Palmerston North, New Zealand, 13–14 February 2008; Currie, L.D., Yates, L., Eds.; p. 549.
[137]  Gaskin, J.W.; Speir, R.A.; Harris, K.; Das, K.C.; Lee, R.D.; Morris, L.A.; Fisher, D.S. Effect of peanut hull and pine chip biochar on soil nutrients, corn nutrient status, and yield. Agron. J. 2010, 102, 623–633, doi:10.2134/agronj2009.0083.
[138]  Gaskin, J.W.; Steiner, C.; Harris, K.; Das, K.C.; Bibens, B. Effect of low-temperature pyrolysis conditions on biochar for agricultural use. Trans. Asabe 2008, 51, 2061–2069.
[139]  Knicker, H. “Black nitrogen”—An important fraction in determining the recalcitrance of charcoal. Org. Geochem. 2010, 41, 947–950, doi:10.1016/j.orggeochem.2010.04.007.
[140]  Yao, F.X.; Arbestain, M.C.; Virgel, S.; Blanco, F.; Arostegui, J.; Maciá-Agulló, J.A.; Macías, F. Simulated geochemical weathering of a mineral ash-rich biochar in a modified soxhlet reactor. Chemosphere 2010, 80, 724–732, doi:10.1016/j.chemosphere.2010.05.026.
[141]  Chidumayo, E.N. Effects of wood carbonization on soil and initial development of seedlings in miombo woodland, zambia. For. Ecol. Manag. 1994, 70, 353–357, doi:10.1016/0378-1127(94)90101-5.
[142]  Kishimoto, S.; Sugiura, G. Charcoal as a soil conditioner. Int. Ach. Futur. 1985, 5, 12–23.
[143]  Six, J.; Jastrow, J.D. Organic Matter Turnover. In Encyclopedia of Soil Science; Lal, R., Ed.; Marcel Dekker: New York, NY, USA, 2002; pp. 936–942.
[144]  Kyung-Hwa, H.; Sang-Geun, H.; Byoung-Choon, J. Aggregate Stability and Soil Carbon Storage as Affected by Different Land Use Practices. In Proceedings of the International Workshop on Evaluation and Sustainable Management of Soil Carbon Sequestration in Asian Countries, Bogor, Indonesia, 28–29 September 2010.
[145]  Sollins, P.; Homann, P.; Caldwell, B.A. Stabilization and destabilization of soil organic matter: Mechanisms and controls. Geoderma 1996, 74, 65–105, doi:10.1016/S0016-7061(96)00036-5.
[146]  Zhang, A.; Cui, L.; Pan, G.; Li, L.; Hussain, Q.; Zhang, X.; Zheng, J.; Crowley, D. Effect of biochar amendment on yield and methane and nitrous oxide emissions from a rice paddy from tai lake plain, china. Agric. Ecosyst. Environ. 2010, 139, 469–475, doi:10.1016/j.agee.2010.09.003.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413