全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Agronomy  2013 

Impact of Biochar on Organic Contaminants in Soil: A Tool for Mitigating Risk?

DOI: 10.3390/agronomy3020349

Keywords: biochar, bioaccessibility, bioavailability, sorption, desorption

Full-Text   Cite this paper   Add to My Lib

Abstract:

The presence of biochar in soils through natural processes (forest fires, bush burning) or through application to soil (agriculture, carbon storage, remediation, waste management) has received a significant amount of scientific and regulatory attention. Biochar alters soil properties, encourages microbial activity and enhances sorption of inorganic and organic compounds, but this strongly depends on the feedstock and production process of biochar. This review considers biochar sources, the production process and result of pyrolysis, interactions of biochar with soil, and associated biota. Furthermore, the paper focuses on the interactions between biochar and common anthropogenic organic contaminants, such as polycyclic aromatic hydrocarbons (PAHs), pesticides, and dioxins, which are often deposited in the soil environment. It then considers the feasibility of applying biochar in remediation technologies in addition to other perspective areas yet to be explored.

References

[1]  United States Environmental Protection Agency. Available online: http://www.epa.gov/osw/hazard/wastemin/priority.htm (accessed on 28 July 2010).
[2]  Mielke, H.W.; Wang, G.; Gonzales, C.R.; Powell, E.T.; Le, B.; Quach, V.N. PAHs and metals in soils of inner-city and suburban New Orleans, Louisiana, USA. Environ. Toxicol. Pharmaco. 2004, 18, 243–247, doi:10.1016/j.etap.2003.11.011.
[3]  Roy, S.; Labelle, S.; Mehta, P.; Mihoc, A.; Fortin, N.; Masson, C.; Leblanc, R.; Chateauneuf, G.; Sura, C.; Gallipeau, C.; Olsen, C.; Delisle, S.; Labrecque, M.; Greer, C.W. Phytoremediation of heavy metal and PAH-contaminated brownfield sites. Plant Soil 2005, 272, 277–290, doi:10.1007/s11104-004-5295-9.
[4]  Chen, J. Rapid urbanization in China: A real challenge to soil protection and food security. Catena 2007, 69, 1–15, doi:10.1016/j.catena.2006.04.019.
[5]  Environment Act 1995 Part II A contaminated land. Section 57. Available online: http://www.legislation.gov.uk/ukpga/1995/25/section/57 (accessed on 22 March 2011).
[6]  United Nations Economic Commission for Europe (UNECE). Protocol on Persistent Organic Pollutants under the 1979 Convention on Long-Range Transboundary Air PollutionUNECE (ECB/EB Air/60). 1998. Available online: http://www.unece.org/fileadmin/DAM/env/lrtap/full%20text/1998.POPs.e.pdf (accessed on 12 April 2011).
[7]  Regitano, J.B.; Koskinen, W.C.; Sadowsky, M.J. Influence of soil aging on sorption and bioavailability of simazine. J. Agric. Food Chem. 2006, 54, 1373–1379, doi:10.1021/jf052343s.
[8]  Dimitrov, S.; Nedelcheva, D.; Dimitrova, N.; Mekenyan, O. Development of a biodegradation model for the prediction of metabolites in soil. Sci. Total Environ. 2010, 408, 3811–3816, doi:10.1016/j.scitotenv.2010.02.008.
[9]  Pollard, S.J.T.; Hough, R.L.; Kim, K.H.; Bellarby, J.; Paton, G.; Semple, K.T.; Coulon, F. Fugacity modelling to predict the distribution of organic contaminants in the soil:oil matrix of constructed biopiles. Chemosphere. 2008, 71, 1432–1439, doi:10.1016/j.chemosphere.2007.12.007.
[10]  Semple, K.T.; Morriss, A.W.J.; Paton, G.I. Bioavailability of hydrophobic organic contaminants in soils: Fundamental concepts and techniques for analysis. Eur. J. Soil Sci. 2003, 54, 809–818, doi:10.1046/j.1351-0754.2003.0564.x.
[11]  Cornelissen, G.; Gustafsson, O.; Bucheli, T.D.; Jonker, M.T.O.; Koelmans, A.A.; van Noort, P.C.M. Critical review: Extensive sorption of organic compounds to black carbon, coal, and kerogen in sediments and soils: Mechanisms and consequences for distribution, bioaccumulation, and biodegradation. Environ. Sci. Technol. 2005, 39, 6881–6895, doi:10.1021/es050191b.
[12]  Rhodes, A.H.; McAllister, L.E.; Chen, R.; Semple, K.T. Impact of activated charcoal on the mineralization of 14C-phenanthrene in soils. Chemosphere 2010a, 79, 463–469, doi:10.1016/j.chemosphere.2010.01.032.
[13]  Schmidt, M.W.I.; Noack, A.G. Black carbon in soils and sediments: Analysis, distribution, implications and current challenges. Global Biogeochem. Cycles 2000, 14, 777–793, doi:10.1029/1999GB001208.
[14]  Rhodes, A.H.; Carlin, A.; Semple, K.T. Impact of black carbon in the extraction and mineralization of phenanthrene in soil. Environ. Sci. Technol. 2008a, 42, 740–745, doi:10.1021/es071451n.
[15]  Sundelin, B.; Wiklund, A.K.E.; Lithner, G.; Gustafsson, O. Evaluation of the role of black carbon in attenuating bioaccumulation of polycyclic aromatic hydrocarbons from field-contaminated sediments. Environ. Toxicol. Chem. 2004, 23, 2611–2617, doi:10.1897/03-359.
[16]  Amonette, J.E.; Kim, J.; Russell, C.K.; Palumbo, A.V.; Daniels, W.L. Enhancement of soil carbon sequestration by amendment with fly ash. In Proceedings of International Ash Utilization Symposium, Organised by University of Kentucky Center for Applied Energy Research, The Lexington Center’s Heritage Hall and the Hyatt Regency Lexington, Lexington, KY, USA, 20–22 October 2003.
[17]  Stroud, J.L.; Paton, G.I.; Semple, K.T. Importance of chemical structure on the development of hydrocarbon catabolism in soil. FEMS Microbiol. Lett. 2007, 272, 120–126, doi:10.1111/j.1574-6968.2007.00750.x.
[18]  Posada-Baquero, R.; Ortega-Calvo, J.J. Recalcitrance of polycyclic aromatic hydrocarbons in soil contributes to background pollution. Environ. Pollut. 2011, 159, 3692–3699, doi:10.1016/j.envpol.2011.07.012.
[19]  Andreozzi, R.; Raffaele, M.; Nicklas, P. Pharmaceuticals in STP effluents and their solar photodegradation in aquatic environment. Chemosphere 2003, 50, 1319–1330, doi:10.1016/S0045-6535(02)00769-5.
[20]  2006 was earth’s fifth warmest year. National Aeronautics and Space Administration. Available online: www.nasa.gov/centers/goddard/news/topstory/2006/2006_warm.html (accessed on 22 June 2010).
[21]  Hildebrandt, A.; Larcorte, S.; Barceló, D. Occurrence and fate of organochlorinated pesticides and PAH in agricultural soils from the Ebro River Basin. Arch. Environ. Contam. Toxicol. 2009, 57, 247–255, doi:10.1007/s00244-008-9260-0.
[22]  Northcott, G.L.; Jones, K.C. Experimental approaches and analytical techniques for determining organic compound bound residues in soil and sediment. Environ. Pollut. 2000, 108, 19–43, doi:10.1016/S0269-7491(99)00199-2.
[23]  Bamforth, S.M.; Singleton, I. Review: Bioremediation of polycyclic aromatic hydrocarbons: Current knowledge and future directions. J. Chem. Technol. Biotechnol. 2005, 80, 723–736, doi:10.1002/jctb.1276.
[24]  Rhodes, A.H.; Hofman, J.; Semple, K.T. Development of phenanthrene catabolism in natural and artificial soils. Environ. Pollut. 2008, 152, 424–430, doi:10.1016/j.envpol.2007.06.072.
[25]  Stokes, J.D.; Paton, G.I.; Semple, K.T. Behaviour and assessment of bioavailability of organic contaminants in soil: Relevance for risk assessment and remediation. Soil Use Manage. 2005, 21, 475–486, doi:10.1079/SUM2005347.
[26]  Rhodes, A.H.; Dew, N.M.; Semple, K.T. Relationship between cyclodextrin extraction and biodegradation of phenanthrene in soil. Environ. Toxicol. Chem. 2008, 27, 1488–1495, doi:10.1897/07-363.1.
[27]  Van Noort, P.C.M.; Cornelissen, G.; ten Hulscher, T.E.M.; Vrind, B.A.; Rigterink, H.; Belfroid, A. Slow and very slow desorption of organic compounds from sediment: Influence of sorbate planarity. Water Res. 2003, 37, 2317–2322.
[28]  Kim, I.S.; Park, J.S.; Kim, K.W. Enhanced biodegradation of polycyclic aromatic hydrocarbons using nonionic surfactants in soil slurry. Appl. Geochem. 2001, 16, 1419–1428, doi:10.1016/S0883-2927(01)00043-9.
[29]  Semple, K.T.; Doick, K.J.; Wick, L.Y.; Harms, H. Review: Microbial interactions with organic contaminants in soil: Definitions, processes and measurement. Environ. Pollut. 2007, 150, 166–176, doi:10.1016/j.envpol.2007.07.023.
[30]  Schwarzenbach, R.P.; Gschwend, P.M.; Imboden, D.M. General Introduction and Sorption Processes Involving Organic Matter. In Environmental Organic Chemistry; John Wiley and Sons Inc: Hoboken, NJ, USA, 2003; p. 277.
[31]  Accardi-Dey, A.; Gschwend, P.M. Assessing the combined roles of natural organic matter and black carbon as sorbents in sediments. Environ. Sci. Technol. 2002, 36, 21–29, doi:10.1021/es010953c.
[32]  Accardi-Dey, A.; Gschwend, P.M. Reinterpreting literature sorption data considering both absorption into organic carbon and adsorption onto black carbon. Environ. Sci. Technol. 2003, 37, 99–106, doi:10.1021/es020569v.
[33]  Cornelissen, G.; Kukulska, Z.; Kalaitzidis, S.; Christanis, K.; Gustafsson, ?. Relations between environmental black carbon sorption and geochemical sorbent characteristics. Environ. Sci. Technol. 2004, 38, 3632–3640, doi:10.1021/es0498742.
[34]  Pignatello, J.J.; Xing, B. Mechanisms of slow sorption of organic chemicals to natural particles. Environ. Sci. Technol. 1995, 30, 1–11, doi:10.1021/es940683g.
[35]  Alexander, M. Aging, bioavailability, and overestimation of risk from environmental pollutant. Environ. Sci. Technol. 2000, 34, 4259–4265, doi:10.1021/es001069+.
[36]  Barraclough, D.; Kearney, T.; Croxford, A. Bound residues: environmental solution or future problem? Environ. Pollut. 2005, 133, 85–90, doi:10.1016/j.envpol.2004.04.016.
[37]  Semple, K.T.; Doick, K.J.; Jones, K.C.; Burauel, P.; Craven, A.; Harms, H. Defining bioavailability and bioaccessibility of contaminated soil and sediment is complicated. Environ. Sci. Technol. 2004, 38, 228A–231A, doi:10.1021/es040548w.
[38]  Rhodes, A.H.; McAllister, L.E.; Semple, K.T. Linking desorption kinetics to phenanthrene biodegradation in soil. Environ. Pollut. 2010b, 158, 1348–1353, doi:10.1016/j.envpol.2010.01.008.
[39]  Macleod, C.J.A.; Morriss, A.W.J.; Semple, K.T. The role of microorganisms in ecological risk assessment of hydrophobic organic contaminants in soils. Adv. Appl. Microbiol. 2001, 48, 171–212, doi:10.1016/S0065-2164(01)48003-8.
[40]  Ortego-Calvo, J.J.; Ball, W.P.; Schulin, R.; Semple, K.T.; Wick, L.Y. Bioavailability of pollutants and soil remediation. J. Environ. Qual. 2007, 36, 1383–1384, doi:10.2134/jeq2007.0001.
[41]  Chiou, W.L. The rate and extent of oral bioavailability versus the rate and extent of oral absorption: Clarification and recommendation of terminology. J. Pharmacokinet. Pharmacodyn. 2001, 28, 3–6, doi:10.1023/A:1011544501243.
[42]  Kelsey, J.W.; Kottler, B.D.; Alexander, M. Selective chemical extractants to predict bioavailability of soil-aged organic chemicals. Environ. Sci. Technol. 1996, 31, 214–217.
[43]  White, J.C.; Kelsey, J.W.; Hatzinger, P.B.; Alexander, M. Factors affecting sequestration and bioavailability of phenanthrene in soils. Environ. Toxicol. Chem. 1997, 16, 2040–2045, doi:10.1002/etc.5620161008.
[44]  Stucki, G.; Alexander, M. Role of dissolution rate and solubility in biodegradation of aromatic compounds. Appl. Environ. Microbiol. 1987, 53, 292–297.
[45]  Harms, H.; Bosma, T.N.P. Mass transfer limitation of microbial growth and pollutant degradation. J. Ind. Microbiol. Biotechnol. 1997, 18, 97–105, doi:10.1038/sj.jim.2900259.
[46]  Gunasekara, A.S.; Xing, B. Sorption and desorption of naphthalene by soil organic matter. J. Environ. Qual. 2003, 32, 240–246.
[47]  Ehlers, G.A.C.; Loibner, A.P. Linking organic pollutant (bio) availability with geosorbent properties and biomimetric methodology: A review of geosorbent characterisation and (bio) availability prediction. Environ. Pollut. 2006, 141, 494–512, doi:10.1016/j.envpol.2005.08.063.
[48]  Reichenberg, F.; Mayer, P. Two complementary sides of bioavailability: Accessibility and chemical activity of organic contaminants in sediments and soils. Environ. Toxicol. Chem. 2006, 25, 1239–1245, doi:10.1897/05-458R.1.
[49]  Mayer, P.; Tor?ng, L.; Gl?sner, N.; J?nsson, J.A. Silicone membrane equilibrator: Measuring chemical activity of nonpolar chemicals with poly(dimethylsiloxane) microtubes immersed directly in tissue and lipids. Anal. Chem. 2009, 81, 1536–1542.
[50]  Reichenberg, F.; Smedes, F.; J?nsson, J.A.; Mayer, P. Determining the chemical activity of hydrophobic organic compounds in soil using polymer coated vials. Chem Central J. 2008, 2, 1–10, doi:10.1186/1752-153X-2-1.
[51]  Mayer, P.; Holmstup, M. Passive dosing of soil invertebrates with polycyclic aromatic hydrocarbons: Limited chemical activity explains toxicity cutoff. Environ. Sci. Technol. 2008, 42, 7516–7521, doi:10.1021/es801689y.
[52]  Reichenberg, F.; Karlson, U.G.; Gustafsson, ?.; Long, S.M.; Pritchard, P.M.; Mayer, P. Low accessibility and chemical activity of PAHs restrict bioremediation and risk of exposure in a manufactured gas plant soil. Environ. Pollut. 2010, 158, 1214–1220, doi:10.1016/j.envpol.2010.01.031.
[53]  Wilson, S.C.; Jones, K.C. Bioremediation of soil contaminated with polynuclear aromatic hydrocarbons (PAHs): A review. Environ. Pollut. 1993, 81, 229–249, doi:10.1016/0269-7491(93)90206-4.
[54]  Giger, W. Micropollutants in the Environment. EAWAG News 40E, 1996, pp. 3–7. Available online: http://library.eawag.ch/eawag-publications/EAWAGnews/40E%281996%29.pdf (accessed on 11 May 2011).
[55]  Knorr, W.; Prentice, I.C.; House, J.I.; Holland, E.A. Long-term sensitivity of soil carbon turnover to warming. Nature 2005, 433, 298–301.
[56]  Conant, R.T.; Drijber, R.A.; Haddix, M.L.; Paton, W.J.; Paul, E.A.; Plante, A.F.; Six, J.; Steinweg, J.M. Sensitivity of organic matter decomposition to warming varies with its quality. Global Change 2008, 14, 868–877, doi:10.1111/j.1365-2486.2008.01541.x.
[57]  Bellamy, P.H.; Loveland, P.J.; Bradley, R.I.; Lark, R.M.; Kirk, G.J.D. Carbon losses from all soils across England and Wales 1978-2003. Nature 2005, 437, 245–248.
[58]  Bosma, T.; Harms, H. Bioavailability of organic pollutants. EAWAG News 40E, 1996, pp. 28–31. Available online: http://library.eawag.ch/eawag-publications/EAWAGnews/40E%281996%29.pdf (accessed on 11 May 2011).
[59]  Nkana, J.C.V.; Demeyer, A.; Verloo, M.G. Chemical effects of wood ash on plant growth in tropical acid soils. Bioresour. Technol. 1998, 63, 251–260.
[60]  Demeyer, A.; Nkana, J.C.V.; Verloo, M.G. Characteristics of wood ash and influence on soil properties and nutrient uptake: An overview. Review paper. Bioresour. Technol. 2001, 77, 287–295, doi:10.1016/S0960-8524(00)00043-2.
[61]  Downie, A.; Crosky, A.; Munroe, P. Physical properties of biochar. In Biochar for Environmental Management; Lehmann, J., Joseph, S., Eds.; Earthscan: London, UK, 2009; pp. 13–29.
[62]  Thies, J.E.; Rillig, M.C. Characteristics of biochar: Biological properties. In Biochar for Environmental Management; Lehmann, J., Joseph, S., Eds.; Earthscan: London, UK, 2009; pp. 85–105.
[63]  Bushnaf, K.M.; Puricelli, S.; Saponaro, S.; Werner, D. Effect of biochar on the fate of volatile petroleum hydrocarbons in an aerobic sandy soil. J. Contam. Hydrol. 2011, 126, 208–215, doi:10.1016/j.jconhyd.2011.08.008.
[64]  Lehmann, J.; Rillig, M.C.; Thies, J.; Masiello, C.A.; Hockaday, W.C.; Crowley, D. Biochar effects on soil biota—A review. Soil Biol. Biochem. 2011, 43, 1812–1836, doi:10.1016/j.soilbio.2011.04.022.
[65]  Rhodes, A.H.; Riding, M.J.; McAllister, L.E.; Lee, K.; Semple, K.T. Influence of activated charcoal on desorption kinetics and biodegradation of phenanthrene in soil. Environ. Sci. Technol. 2012, 46, 12445–12451, doi:10.1021/es3025098.
[66]  Lohmann, R.; Macfarlane, K.J.; Gschwend, P.M. Importance of black carbon to sorption of native PAHs, PCBs, and PCDDs in Boston and New York Harbor sediment. Environ. Sci. Technol. 2005, 39, 141–148, doi:10.1021/es049424+.
[67]  Lehmann, J.; Joseph, S. Biochar for Environmental Management, 1st; Lehmann, J., Ed.; Earthscan: London, UK, 2009; pp. 1–9.
[68]  Winsley, P. Biochar and bioenergy production for climate change mitigation. New Zealand Sci. Rev. 2007, 64, 5–10.
[69]  Steinbeiss, S.; Gleixner, G.; Antonietti, M. Effect of biochar amendment on soil carbon balance and soil microbial activity. Soil Biol. Biochem. 2009, 41, 1301–1310, doi:10.1016/j.soilbio.2009.03.016.
[70]  Steiner, C.; Garcia, M.; Zech, W. Effects of charcoal as slow release nutrient carrier on N-P-K dynamics and soil microbial population: Pot experiments with ferralsol substrate. In Amazonian Dark Earths, Wim Sombroek’s Vision, 1st; Woods, W.I., Teixeira, W.G., Lehmann, J., Steiner, C., WinklerPrins, A., Rebellato, L., Eds.; Springer: Berlin, Germany, 2009; p. 325.
[71]  Ippolito, J.A.; Laird, D.A.; Busscher, W.J. Environmental benefits of biochar. J. Environ. Qual. 2012, 41, 967–972, doi:10.2134/jeq2012.0151.
[72]  Gaunt, J.L.; Lehmann, J. Energy balance and emissions associated with biochar sequestration and pyrolysis bioenergy production. Environ. Sci. Technol. 2008, 42, 4152–4158, doi:10.1021/es071361i.
[73]  Lavoué, D.; Liousse, C.; Cachier, H.; Stocks, B.J.; Goldammer, J.G. Modeling of carbonaceous particles emitted by boreal and temperate wildfires at northern latitudes. J. Geophy. Res. 2000, 105, 26871–26890, doi:10.1029/2000JD900180.
[74]  Ishii, T.; Kadoya, K. Effects of charcoal as a soil conditioner on citrus growth and vesicular-arbuscular mycorrhizal development. J. Jpn. Soc. Hort. Sci. 1994, 63, 529–535, doi:10.2503/jjshs.63.529.
[75]  Lehmann, J.; Gaunt, J.; Rondon, M. Bio-char sequestration in terrestrial ecosystems—A review. Mitig. Adapt. Strat. Global Change 2006, 11, 403–427.
[76]  Windeisen, E.; Wegener, G. Behaviour of lignin during thermal treatments of wood. Ind. Crops Products 2008, 27, 157–162, doi:10.1016/j.indcrop.2007.07.015.
[77]  Maiti, S.; Dey, S.; Purakayastha, S.; Ghosh, B. Physical and thermochemical characterization of rice husk char as a potential biomass source. Bioresour. Technol. 2006, 97, 2065–2070, doi:10.1016/j.biortech.2005.10.005.
[78]  Sohi, S.; Lopez-Capel, E.; Krull, E.; Bol, R. Biochar, Climate Change and Soil: A Review to Guide Future Research. CSIRO Land and Water Science Report 05/09; CSIRO Publishing: Melbourne, Australia, 2009; pp. 5–6.
[79]  Verheijen, F.; Jeffery, S.; Bastos, A.C.; van der Velde, M.; Diafas, I. Biochar Application to Soils. A Critical Scientific Review of Effects on Soil Properties, Processes and Functions. EUR 240099 EN; Office for the Official Publications of the European Communities: Luxembourg, 2009; pp. 1–149.
[80]  Esteves, B.M.; Pereira, H.M. Wood modification by heat treatment: A review. Bioresour. 2009, 4, 370–404.
[81]  Karag?z, S.; Bhaskar, T.; Muto, A.; Sakata, Y.; Oshiki, T.; Kishimoto, T. Low-temperature catalytic hydrothermal treatment of wood biomass: Analysis of liquid products. Chem. Eng. J. 2005, 108, 127–137.
[82]  Fushimi, C.; Araki, K.; Yamaguchi, Y.; Tsutsumi, A. Effect of heating rate on steam gasification biomass. 2. Thermogravimetric-mass spectrometric (TG-MS) analysis of gas evolution. Ind. Eng. Chem. Res. 2003, 42, 3929–2936, doi:10.1021/ie0300575.
[83]  Gundale, M.J.; Deluca, T.H. Temperature and source material influence ecological attributes of Ponderosa pine and Douglas-fir charcoal. Forest Ecol. Manag. 2006, 231, 86–93, doi:10.1016/j.foreco.2006.05.004.
[84]  Chen, B.; Zhou, D.; Zhu, L.; Shen, Y. Sorption characteristics and mechanisms of organic contaminant to carbonaceous biosorbents in aqueous solution. Sci. China Ser. B Chem. 2008, 51, 464–472, doi:10.1007/s11426-008-0041-4.
[85]  International Energy Agency 2007 Annual Report. Available online: http://www.ieabioenergy.com/LibItem.aspx?id=5761 (accessed on 18 June 2010).
[86]  Tjeerdsma, B.; Boonstra, M.; Pizzi, A.; Tekely, P.; Militz, H. Charaterization of thermally modified wood: Molecular reasons for wood performance improvement. Holz Roh Werkst 1998, 56, 149–153, doi:10.1007/s001070050287.
[87]  Sivonen, H.; Maunu, S.; Sundholm, F.; J?ms?, S.; Viitaniemi, P. Magnetic resonance studies of thermally modified wood. Holzforschung 2002, 56, 648–654.
[88]  Nuopponen, M.; Vuorinen, T.; Jamsa, S.; Viitaniemi, P. Thermal modifications in softwood studied by FT-IR and UV resonance Raman spectroscopies. J. Wood Chem. Technol. 2004, 24, 13–26.
[89]  Weiland, J.J.; Guyonnet, R. Study of chemical modifications and fungi degradation of thermally modified wood using DRIFT spectroscopy. Holz Roh Werkst 2003, 61, 216–220.
[90]  Bourgois, J.; Guyonnet, R. Characterization and analysis of torrefied wood. Wood Sci. Technol. 1988, 22, 143–155, doi:10.1007/BF00355850.
[91]  James, G.; Sabatini, D.A.; Chiou, C.T.; Rutherford, D.; Scott, A.C.; Karapanagioti, H.K. Evaluating phenanthrene sorption on various wood chars. Water Res. 2005, 39, 549–558, doi:10.1016/j.watres.2004.10.015.
[92]  Bornemann, L.C.; Kookana, R.S.; Welp, G. Differential sorption behaviour of aromatic hydrocarbons on charcoals prepared at different temperatures from grass and wood. Chemosphere 2007, 67, 1033–1042, doi:10.1016/j.chemosphere.2006.10.052.
[93]  Zhang, H.; Lin, K.; Wang, H.; Gan, J. Effect of Pinus radiata derived biochars on soil sorption and desorption of phenanthrene. Environ. Pollut. 2010, 158, 2821–2825, doi:10.1016/j.envpol.2010.06.025.
[94]  Fan, M.; Marhsall, W.; Daugaard, D.; Brown, R. Steam activation of chars produced from oat hulls and corn stover. Bioresour. Technol. 2004, 93, 103–107, doi:10.1016/j.biortech.2003.08.016.
[95]  Brewer, C.E.; Schmidt-Rohr, K.; Satrio, J.A.; Brown, R.C. Characterization of biochar from fast pyrolysis and gasification systems. Environ. Prog. Sustainable Energy 2009, 28, 386–396, doi:10.1002/ep.10378.
[96]  Chen, B.; Chen, Z. Sorption of naphthalene and 1-naphthol by biochars of orange peels with different pyrolytic temperatures. Chemosphere 2009, 76, 127–133, doi:10.1016/j.chemosphere.2009.02.004.
[97]  Lehmann, J. A handful of carbon. Nature 2007, 447, 143–144, doi:10.1038/447143a.
[98]  Cheng, C.H.; Lehmann, J.; Engelhard, M.H. Natural oxidation of black carbon in soils: changes in molecular form and surface charge along a climosequence. Geochim. Cosmochim. Acta 2008, 72, 1598–1610, doi:10.1016/j.gca.2008.01.010.
[99]  Allardice, D.J. The adsorption of oxygen on brown coal char. Carbon 1966, 4, 255–266, doi:10.1016/0008-6223(66)90087-X.
[100]  Baldock, J.A.; Smernik, R.J. Chemical composition and bioavailability of thermally altered Pinus resinosa (red pine) wood. Org. Geochem. 2002, 33, 1093–1109, doi:10.1016/S0146-6380(02)00062-1.
[101]  Kawamoto, K.; Ishimaru, K.; Imamura, Y. Reactivity of wood charcoal with ozone. J. Wood Sci. 2005, 51, 66–72, doi:10.1007/s10086-003-0616-9.
[102]  Hammes, K.; Schmidt, M.W.I. Changes of biochar in soil. In Biochar for Environmental Management, 1st; Lehmann, J., Joseph, S., Eds.; Earthscan: London, UK, 2009; pp. 169–181.
[103]  Brodowski, S.; Amelung, W.; Haumaier, L.; Abetz, C.; Zech, W. Morphological and chemical properties of black carbon in physical soil fractions as revealed by scanning electron microscopy and energy-dispersive x-ray spectrometry. Geoderma 2005, 128, 116–129, doi:10.1016/j.geoderma.2004.12.019.
[104]  Nguyen, T.H.; Cho, H.H.; Poster, D.L.; Ball, W.P. Evidence for a pore- filling mechanism in the adsorption of aromatic hydrocarbons to a natural wood char. Environ. Sci. Technol. 2007, 41, 1212–1217, doi:10.1021/es0617845.
[105]  Obst, M.; Grathwohl, P.; Kappler, A.; Eibl, O.; Peranio, N.; Gocht, T. Quantitative high-resolution mapping of phenanthrene sorption to black carbon particles. Environ. Sci. Technol. 2011, 45, 7314–7322, doi:10.1021/es2009117.
[106]  Werner, D.; Karapanagioti, H.K. Comment on “modeling maximum adsorption capacities of soot and soot-like materials for PAHs and PCBs”. Environ. Sci. Technol. 2005, 39, 381–382, doi:10.1021/es048579e.
[107]  Huang, W.; Peng, P.; Yu, Z.; Fu, J. Effects of organic matter heterogeneity on sorption and desorption of organic contaminants by soils and sediments. Appl. Geochem. 2003, 18, 955–972, doi:10.1016/S0883-2927(02)00205-6.
[108]  Hamer, U.; Marschner, B.; Brodowski, S.; Amelung, W. Interactive priming of black carbon and glucose mineralization. Org. Geochem. 2004, 35, 823–830, doi:10.1016/j.orggeochem.2004.03.003.
[109]  Kuzyakov, Y.; Subbotina, I.; Chen, H.; Bogomolova, I.; Xu, X. Black carbon decomposition and incorporation into soil microbial biomass estimated by 14C labeling. Soil Biol. Biochem. 2009, 41, 210–219, doi:10.1016/j.soilbio.2008.10.016.
[110]  Major, J.; Lehmann, J.; Rondon, M.; Goodale, C. Fate of soil-applied black carbon: Downward migration, leaching and soil respiration. Global Change Biol. 2010, 16, 1366–1379, doi:10.1111/j.1365-2486.2009.02044.x.
[111]  Shneour, E.A. Oxidation of graphitic carbon in certain soils. Science 1966, 151, 991–992.
[112]  Ma?ek, O.; Brownsort, P.; Cross, A.; Sohi, S. Influence of production conditions on the yield and environmental stability of biochar. Fuel 2013, 103, 151–155, doi:10.1016/j.fuel.2011.08.044.
[113]  Spokas, K.A. Review of the stability of biochar in soils: Predictability of O:C molar ratios. Carbon Manage. 2010, 1, 289–303, doi:10.4155/cmt.10.32.
[114]  Kluser, S.; Richard, J.P.; Giuliani, G.; De Bono, A.; Peduzzi, P. Illegal Oil Discharge in European Seas. European Alert Bulletin No 7; United Nations Environmental Protection (UNEP): Geneva, Switzerland, 2006; pp. 1–4. Available online: http://www.grid.unep.ch/products/3_Reports/ew_oildischarge.en.pdf (accessed on 22 November 2009).
[115]  Chen, B.; Zhou, D.; Zhu, L. Transitional adsorption and partition of nonpolar and polar aromatic contaminant by biochars of pine needles with different pyrolytic temperatures. Environ. Sci. Technol. 2008, 42, 5137–5143, doi:10.1021/es8002684.
[116]  Chen, B.; Yuan, M. Enhanced sorption of polycyclic aromatic hydrocarbons by soil amended with biochar. J. Soils Sediments 2011, 11, 62–71, doi:10.1007/s11368-010-0266-7.
[117]  Oleszczuk, P.; Hale, S.E.; Lehmann, J.; Cornelissen, G. Activated carbon and biochar amendments decrease pore-water concentrations of polycyclic aromatic hydrocarbons (PAHs) in sewage sludge. Bioresour. Technol. 2012, 111, 84–91, doi:10.1016/j.biortech.2012.02.030.
[118]  Fytili, D.; Zabaniotou, A. Utilization of sewage sludge in EU application of old and new methods -A review. Renew. Sustain. Energy Rev. 2008, 12, 116–140, doi:10.1016/j.rser.2006.05.014.
[119]  Chai, Y.; Currie, R.J.; Davis, J.W.; Wilken, M.; Martin, G.D.; Fishman, V.N.; Ghosh, U. Effectiveness of activated carbon and biochar in reducing the availability of polychlorinated dibenzo-p-dioxins/dibenzofurans in soils. Environ. Sci. Technol. 2012, 46, 1035–1043, doi:10.1021/es2029697.
[120]  Yang, H.; Sheng, K. Characterization of biochar properties affected by different pyrolysis temperatures using visible-near-infrared spectroscopy. ISRN Spectroscopy 2012, 2012, 1–7.
[121]  Zheng, W.; Guo, M.; Chow, T.; Bennett, D.N.; Rajagopalan, N. Sorption properties of greenwaste biochar for two triazine pesticides. J. Hazard. Mater. 2010, 181, 121–126, doi:10.1016/j.jhazmat.2010.04.103.
[122]  Song, J.; Peng, P. Characterisation of black carbon materials by pyrolysis-gas chromatography-mass spectrometry. J. Anal. Appl. Pyrolysis 2010, 87, 129–137, doi:10.1016/j.jaap.2009.11.003.
[123]  Spokas, K.A.; Novak, J.M.; Stewart, C.E.; Cantrell, K.B.; Uchimiya, M.; DuSaire, M.G.; Ro, K.S. Qualitative analysis of volatile organic compounds on biochar. Chemosphere 2011, 85, 869–882, doi:10.1016/j.chemosphere.2011.06.108.
[124]  Hale, S.E.; Hanley, K.; Lehmann, J.; Zimmerman, A.R.; Cornelissen, G. Effects of chemical, biological, and physical aging as well as soil addition on the sorption of pyrene to activated carbon and biochar. Environ. Sci. Technol. 2011, 45, 10445–10453, doi:10.1021/es202970x.
[125]  Semer, R.; Reddy, K.R. Evaluation of soil washing process to remove mixed contaminants from a sandy loam. J. Hazard. Mater. 1996, 45, 45–57, doi:10.1016/0304-3894(96)82887-1.
[126]  Beesley, L.; Moreno-Jiménez, E.; Gomez-Eyles, J. Effects of biochar and greenwaste compost amendments on mobility, bioavailability and toxicity of inorganic and organic contaminants in a multi-element polluted soil. Environ. Pollut. 2010, 158, 2282–2287, doi:10.1016/j.envpol.2010.02.003.
[127]  Wang, X.; Sato, T.; Xing, B. Competitive sorption of pyrene on wood chars. Environ. Sci. Technol. 2006, 40, 3267–3272, doi:10.1021/es0521977.
[128]  Zhou, Z.; Sun, H.; Zhang, W. Desorption of polycyclic aromatic hydrocarbons from aged and unaged charcoals with and without modification of humic acids. Environ. Pollut. 2010, 158, 1916–1921, doi:10.1016/j.envpol.2009.10.035.
[129]  Jonker, M.T.O.; Koelmans, A.A. Extraction of polycyclic aromatic hydrocarbons from soot and sediment: Solvent evaluation and implication for sorption mechanism. Environ. Sci. Technol. 2002, 36, 4107–4113, doi:10.1021/es0103290.
[130]  Marchal, G.; Smith, K.E.C.; Rein, A.; Winding, A.; Trapp, S.; Karlson, U.G. Comparing the desorption and biodegradation of low concentrations of phenanthrene sorbed to activated carbon, biochar and compost. Chemosphere 2013, 90, 1767–1778, doi:10.1016/j.chemosphere.2012.07.048.
[131]  Yu, X.; Pan, L.; Ying, G.; Kookana, R.S. Enhanced and irreversible sorption of pesticide pyrimethanil by soil amended with biochars. J. Environ. Sci. 2010, 22, 615–620, doi:10.1016/S1001-0742(09)60153-4.
[132]  Yang, X.B.; Ying, G.G.; Peng, P.A.; Wang, L.; Zhao, J.L.; Zhang, L.J.; Yuan, P.; He, H.P. Influence of biochars on plant uptake and dissipation of two pesticides in an agricultural soil. J. Agric. Food Chem. 2010, 58, 7915–7921.
[133]  Reid, B.J.; Stokes, J.D.; Jones, K.C.; Semple, K.T. Nonexhaustive cyclodextrin-based extraction technique for the evaluation of PAH bioavailability. Environ. Sci. Technol. 2000, 34, 3174–3179, doi:10.1021/es990946c.
[134]  Doick, K.J.; Dew, N.M.; Semple, K.T. Linking catabolism to cyclodextrin extractability: Determination of the microbial availability of PAHs in soil. Environ. Sci. Technol. 2005, 39, 8858–8864, doi:10.1021/es0507463.
[135]  Semple, K.T.; Dew, N.M.; Doick, K.J.; Rhodes, A.H. Can microbial mineralization be used to estimate microbial availability of organic contaminants in soil? Environ. Pollut. 2006, 140, 164–172.
[136]  Bending, G.D.; Lincoln, S.D.; Edmondson, R.N. Spatial variation in the degradation rate of the pesticides isoproturon, azoxystrobin and diflufenican in soil and its relationship with chemical and microbial properties. Environ. Pollut. 2006, 139, 279–287, doi:10.1016/j.envpol.2005.05.011.
[137]  Anderson, D.R.; Fisher, R. Sources of dioxin in the United Kingdom: the steel industry and other source. Chemosphere 2002, 46, 371–381, doi:10.1016/S0045-6535(01)00178-3.
[138]  Long, M.; Bonefeld-J?rgensen, S.C. Dioxin-like activity in environmental and human samples from Greenland and Denmark. Chemosphere 2012, 89, 919–928.
[139]  Sun, K.; Gao, B.; Zhang, Z.; Zhang, G.; Zhao, Y.; Xing, B. Sorption of atrazine and phenanthrene by organic matter fraction in soil and sediment. Environ. Pollut. 2010, 158, 3520–3526, doi:10.1016/j.envpol.2010.08.022.
[140]  Hale, S.E.; Lehmann, J.; Rutherford, D.; Zimmerman, A.R.; Bachmann, R.T.; Shitumbanuma, V.; O’Toole, A.; Sundqvist, K.L.; Arp, H.P.H.; Cornelissen, G. Quantifying the total and bioavailable polycyclic aromatic hydrocarbons and dioxins in biochars. Environ. Sci. Technol. 2012, 46, 2830–2838, doi:10.1021/es203984k.
[141]  Spokas, K.A.; Koskinen, W.C.; Baker, J.M.; Reicosky, D.C. Impacts of woodchip biochar additions on greenhouse gas production and sorption/degradation of two herbicides in a Minnesota soil. Chemosphere 2009, 77, 574–581, doi:10.1016/j.chemosphere.2009.06.053.
[142]  Kan, A.T.; Fu, G.; Hunter, M.; Chen, W.; Ward, C.H.; Tomson, M.B. Irreversible sorption of neutral hydrocarbons to sediments: Experimental observations and model predictions. Environ. Sci. Technol. 1998, 32, 892–902, doi:10.1021/es9705809.
[143]  Fernandes, M.B.; Brooks, P. Characterization of carbonaceous combustion residues: II. Nonpolar organic compounds. Chemosphere 2003, 53, 447–458, doi:10.1016/S0045-6535(03)00452-1.
[144]  Fabbri, D.; Rombolà, A.G.; Torri, C.; Spokas, K.A. Determination of polycyclic aromatic hydrocarbons in biochar and biochar amended soil. J. Anal. Appl. Pyrolysis 2012. in press.
[145]  Freddo, A.; Cai, C.; Reid, B.J. Environmental contextualisation of potential toxic elements and polycyclic aromatic hydrocarbons in biochar. Environ. Pollut. 2012, 171, 18–24, doi:10.1016/j.envpol.2012.07.009.
[146]  Hilber, I.; Blum, F.; Leifeld, J.; Schmidt, H.P.; Bucheli, T.D. Quantitative determination of PAHs in biochar: A prerequisite to ensure its quality and safe application. J. Agric. Food Chem. 2012, 60, 3042–3050.
[147]  Keiluweit, M.; Kleber, M.; Sparrow, M.A.; Simoneit, B.R.T.; Prahl, F.G. Solvent-extractable polycyclic aromatic hydrocarbons in biochar: influence of pyrolysis temperature and feedstock. Environ. Sci. Technol. 2012, 46, 9333–9341.
[148]  Kolb, S.E.; Fermanich, K.J.; Dornbush, M.E. Effect of charcoal quantity on microbial biomass and activity in temperate soils. Soil Sci. Soc. Am. J. 2009, 73, 1173–1181, doi:10.2136/sssaj2008.0232.
[149]  Asai, H.; Samson, B.K.; Stephan, H.M.; Songyikhangsuthor, K.; Homma, K.; Kiyono, Y.; Inoue, Y.; Shiraiwa, T.; Horie, T. Biochar amendment techniques for upland rice production in Northern Laos 1. Soil physical properties, leaf SPAD and grain yield. Field Crops Res. 2009, 111, 81–84, doi:10.1016/j.fcr.2008.10.008.
[150]  Pietik?inen, J.; Kiikkil?, O.; Fritze, H. Charcoal as a habitat for microbes and its effect on microbial community of the underlying humus. Oikos 2000, 89, 231–242.
[151]  Yu, X.Y.; Ying, G.G.; Kookana, R.S. Reduced plant uptake of pesticides with biochar additions to soil. Chemosphere 2009, 76, 665–671, doi:10.1016/j.chemosphere.2009.04.001.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413