全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Agronomy  2013 

Screening for Barley Waterlogging Tolerance in Nordic Barley Cultivars (Hordeum vulgare L.) Using Chlorophyll Fluorescence on Hydroponically-Grown Plants

DOI: 10.3390/agronomy3020376

Keywords: biomass accumulation, chlorophyll fluorescence, Nordic barley, breeding, climate change, root growth, waterlogging

Full-Text   Cite this paper   Add to My Lib

Abstract:

Waterlogging can reduce crop yield by 20%–50% or more, and lack of efficient selection methods is an obstacle in plant breeding. The methods currently used are mainly indices based on germination ability in Petri dishes and leaf chlorosis in plants grown in waterlogged soils. Cultivation in oxygen-depleted nutrient solution is the ultimate waterlogging system. Therefore methods based on root growth inhibition and on fluorescence in plant material hydroponically grown in oxygen-depleted solution were evaluated against data on biomass accumulation in waterlogged soils. Both traits were correlated with waterlogging tolerance in soil, but since it was easier to measure fluorescence, this method was further evaluated. A selection of F 2 plants with high and low fluorescence revealed a small but significant screening effect in F 3 plants. A test of 175 Nordic cultivars showed large variations in chlorophyll fluorescence in leaves from oxygen-stressed seedlings, indicating that adaptation to waterlogging has gradually improved over the past 40–50 years with the introduction of new cultivars onto the market. However, precipitation also increased during the period and new cultivars may have inadvertently been adapted to this while breeding barley for grain yield. The results suggest that the hydroponic method can be used for screening barley populations, breeding lines or phenotyping of populations in developing markers for quantitative trait loci.

References

[1]  Setter, T.L.; Waters, I. Review of prospects for germplasm improvement for waterlogging tolerance in wheat, barley and oats. Plant Soil 2003, 253, 1–34, doi:10.1023/A:1024573305997.
[2]  Zhou, M.X.; Li, H.B.; Mendham, N.J. Combining ability of waterlogging tolerance in barley. Crop Sci. 2007, 47, 278–284, doi:10.2135/cropsci2006.02.0065.
[3]  Kjellstrom, E.; Nikulin, G.; Hansson, U.; Strandberg, G.; Ullerstig, A. 21st century changes in the European climate: Uncertainties derived from an ensemble of regional climate model simulations. Tellus Ser. A Dyn. Meteorol. Oceanogr. 2011, 63, 24–40, doi:10.1111/j.1600-0870.2010.00475.x.
[4]  Colmer, T.D.; Voesenek, L.A.C.J. Flooding tolerance: Suites of plant traits in variable environments. Funct. Plant Biol. 2009, 36, 665–681, doi:10.1071/FP09144.
[5]  Ahmed, F.; Rafii, M.Y.; Ismail, M.R.; Juraimi, A.S.; Rahim, H.A.; Asfaliza, R.A.; Latif, M.A. Waterlogging tolerance of crops: Breeding, mechanism of tolerance, molecular approaches, and future prospects. BioMed. Res. Int. 2013, doi:10.1155/2013/963525.
[6]  Garthwaite, A.J.; von Bothmer, R.; Colmer, T.D. Diversity in root aeration traits associated with waterlogging tolerance in the genus Hordeum. Funct. Plant Biol. 2003, 30, 875–889, doi:10.1071/FP03058.
[7]  Pang, J.Y.; Zhou, M.X.; Mendham, N.; Shabala, S. Growth and physiological responses of six barley genotypes to waterlogging and subsequent recovery. Aust. J. Agric. Res. 2004, 55, 895–906, doi:10.1071/AR03097.
[8]  Malik, A.I.; Islam, A.K.M. R.; Colmer, T.D. Transfer of the barrier to radial oxygen loss in roots of Hordeum marinum to wheat (Triticum aestivum): Evaluation of four H-marinum-wheat amphiploids. New Phytol. 2011, 190, 499–508, doi:10.1111/j.1469-8137.2010.03519.x.
[9]  Malik, A.I.; Colmer, T.D.; Lambers, T.L.; Setter, H.T.L.; Schortemeyer, M. Short-term waterlogging has long-term effects on the growth and physiology of wheat. New Phytol. 2002, 153, 225–236, doi:10.1046/j.0028-646X.2001.00318.x.
[10]  Takeda, K.; Fukuyama, T. Tolerance to pre-germination flooding in the world collection of barley varieties. Barley Genet. 1987, V, 735–740.
[11]  Hamachi, Y.; Yoshino, M.; Furusho, M.; Yoshida, T. Index of screening for wet endurance in malting barley. Jpn J. Breed. 1990, 40, 361–366.
[12]  Li, H.; Vaillancourt, R.; Mendham, N.; Zhou, M. Comparative mapping of quantitative trait loci associated with waterlogging tolerance in barley (Hordeum vulgare L.). BMC Genomics 2008, 9, 401.
[13]  Striker, G. Visiting the methodological aspects of flooding experiments: Quantitative evidence from agricultural and ecophysiological studies. J. Agron. Crop Sci. 2008, 194, 249–255, doi:10.1111/j.1439-037X.2008.00317.x.
[14]  Qiu, F.Z.; Zheng, Z.L.; Xu, S.Z. Mapping of QTL associated with waterlogging tolerance during the seedling stage in maize. Ann. Bot. 2007, 99, 1067–108, doi:10.1093/aob/mcm055.
[15]  Maxwell, K.; Johnson, G.N. Chlorophyll fluorescence—A practical guide. J. Exp. Bot. 2000, 51, 659–668, doi:10.1093/jexbot/51.345.659.
[16]  Else, M.A.; JJanowiak, F.; Atkinson, C.J.; Jackson, M.B. Root signals and stomatal closure in relation to photosynthesis, chlorophyll a fluorescence and adventitious rooting of flooded tomato plants. Ann. Bot. 2009, 103, 313–323.
[17]  Bertholdsson, N.-O. Pre-studies of water- and drought tolerance in Barleyunpublished.
[18]  Bertholdsson, N.-O.; Kolodinska Brantestam, A. Breeding for improved yield in Nordic barley germplasms and its effects on early vigour, straw length and harvest index. Eur. J. Agron. 2009, 30, 266–274, doi:10.1016/j.eja.2008.12.003.
[19]  Larsson, S. A simple, rapid and non-destructive method useful for drought resistance breeding in oats (Avena sativa L.). Zeitschrift für Pflanzenzüchtung 1982, 89, 206–221.
[20]  Walz, H. Photosynthesis yield analyzer MINI-PAM. In Handbook of Operation, 2nd ed.; Heinz Walz GmbH: Effeltrich, Germany, 1999.
[21]  Arbona, V.; López-Climent, M.F.; Pérez-Clemente, R.M.; Gómez-Cadenas, A. Maintenance of a high photosynthetic performance is linked to flooding tolerance in citrus. Environ. Exp. Bot. 2009, 66, 135–142, doi:10.1016/j.envexpbot.2008.12.011.
[22]  Smethurst, C.F.; Shabala, S. Screening methods for waterlogging tolerance in lucerne: Comparative analysis of waterlogging effects on chlorophyll fluorescence, photosynthesis, biomass and chlorophyll content. Funct. Plant Biol. 2003, 30, 335–343, doi:10.1071/FP02192.
[23]  Hague, M.E.; Oyanagi, A.; Kawaguchi, K. Aerenchyma formation in the seminal roots of Japanese wheat cultivars in relatin to growth under waterlogged conditions. Plant Product. Sci. 2012, 15, 164–173, doi:10.1626/pps.15.164.
[24]  Vartapetian, B. Plant anaerobic stress as a novel trend in ecological physiology, biochemistry, and molecular biology: 2. Further development of the problem. Russian J. Plant Physiol. 2006, 53, 711–738, doi:10.1134/S102144370606001X.
[25]  Lynch, J.P. Roots of the second green revolution. Aust. J. Bot. 2007, 55, 493–512, doi:10.1071/BT06118.
[26]  Xue, D.; Zhou, M.; Zhang, X.; Chen, S.; Wie, K.; Chen, S.; Wie, K.; Zeng, F.; Mao, Y.; Wu, F.; Zhang, G. Identification of QTLs for yield and yield components of barley under different growth conditions. J. Zhejiang Univ. Sci. B. 2011, 11, 169–176.
[27]  Zhou, M. Accurate phenotyping reveals better QTL for waterlogging tolerance in barley. Plant Breed. 2011, 130, 203–208, doi:10.1111/j.1439-0523.2010.01792.x.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413