全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Agronomy  2013 

Improving Resilience of Northern Field Crop Systems Using Inter-Seeded Red Clover: A Review

DOI: 10.3390/agronomy3010148

Keywords: red clover, Trifolium pratense, cropping system, wheat, cover crop, inter-seeding, resilience, input use efficiency

Full-Text   Cite this paper   Add to My Lib

Abstract:

In light of the environmental challenges ahead, resilience of the most abundant field crop production systems must be improved to guarantee yield stability with more efficient use of nitrogen inputs, soil and water resources. Along with genetic and agronomic innovations, diversification of northern agro-ecosystems using inter-seeded legumes provides further opportunities to improve land management practices that sustain crop yields and their resilience to biotic and abiotic stresses. Benefits of legume cover crops have been known for decades and red clover ( Trifolium pratense) is one of the most common and beneficial when frost-seeded under winter wheat in advance of maize in a rotation. However, its use has been declining mostly due to the use of synthetic fertilizers and herbicides, concerns over competition with the main crop and the inability to fully capture red clover benefits due to difficulties in the persistence of uniform stands. In this manuscript, we first review the environmental, agronomic, rotational and economical benefits associated with inter-seeded red clover. Red clover adaptation to a wide array of common wheat-based rotations, its potential to mitigate the effects of land degradation in a changing climate and its integration into sustainable food production systems are discussed. We then identify areas of research with significant potential to impact cropping system profitability and sustainability.

References

[1]  USDA. World Agricultural Production: Monthly Circular Series for World Agricultural Production; USDA: Washington, DC, USA, 2012.
[2]  USDA-NASS Commodity Statistics Database. USDA Web site, Available online: http://www.nass.usda.gov/Statistics_by_Subject/index.php?sector=CROPS (accessed on 5 November 2012).
[3]  FAO Food Price Index Database. FAO Web site, Available online: http://www.fao.org/worldfoodsituation/wfs-home/foodpricesindex/en/ (accessed on 5 November 2012).
[4]  Meehl, G.A.; Stocker, T.F.; Collins, W.D.; Friedlingstein, P.; Gaye, A.T.; Gregory, J.M.; Kitoh, A.; Knutti, R.; Murphy, J.M.; Noda, A.; et al. Global Climate Projections. In Climate Change 2007: The Physical Science Basis; Solomon, S.D., Qin, M., Manning, Z., Chen, M., Marquis, K.B., Averyt, M., Miller, H.L., Eds.; Cambridge University Press: Cambridge, UK, 2007.
[5]  Scholberg, J.M.S.; Dogliotti, S.; Leoni, C.; Cherr, C.M.; Zotarelli, L.; Rossing, W.A.H. Cover Crops for Sustainable Agrosystems in the Americas. In Genetic Engineering, Biofertilisation, Soil Quality and Organic Farming; Lichtfouse, E., Ed.; Springer Netherlands: Dordrecht, The Netherlands, 2010; pp. 23–58.
[6]  Sainju, U.M.; Whitehead, W.F.; Singh, B.P. Agricultural management practices to sustain crop yields and improve soil and environmental qualities. Sci. World J. 2003, 3, 768–789, doi:10.1100/tsw.2003.62.
[7]  Rosenberg, N.J. Adaptation of agriculture to climate change. Clim. Chang. 1992, 21, 385–405, doi:10.1007/BF00141378.
[8]  Tonitto, C.; David, M.B.; Drinkwater, L.E. Replacing bare fallows with cover crops in fertilizer-intensive cropping systems: A meta-analysis of crop yield and n dynamics. Agric. Ecosyst. Environ. 2006, 112, 58–72, doi:10.1016/j.agee.2005.07.003.
[9]  Lal, R.; Regnier, E.; Eckert, D.J.; Edwards, W.M.; Hammond, R. Expectations of Cover Crops for Sustainable Agriculture. In Cover Crops for Clean Water; Hargrove, W.L., Ed.; Soil and Water Conservation Society: Ankeny, IA, USA, 1991; pp. 1–11.
[10]  Lu, Y.-C.; Watkins, K.B.; Teasdale, J.R.; Abdul-Baki, A. Cover crops in sustainable food production. Food Rev. Int. 2000, 16, 121–157, doi:10.1081/FRI-100100285.
[11]  Dinnes, D.L.; Karlen, D.L.; Jaynes, D.B.; Kaspar, T.C. Review and Interpretation: Nitrogen Management Strategies to Reduce Nitrate Leaching in Tile-drained Midwestern Soils; Technical Report for USDA-ARS: Lincoln, NE, USA, 2002.
[12]  Francis, G.; Bartley, K.; Tabley, F. The effect of winter cover crop management on nitrate leaching losses and crop growth. J. Agric. Sci. 1998, 131, 299–308, doi:10.1017/S0021859698005899.
[13]  Doran, J.W.; Smith, M.S. Role of Cover Crops in Nitrogen Cycling. In Cover Crops for Clean Water; Hargrove, W.L., Ed.; Soil and Water Conservation Society: Ankeny, IA, USA, 1991; pp. 85–90.
[14]  Langdale, G.W.; Blevins, R.L.; Karlen, D.L.; Mccool, D.K.; Nearing, M.A.; Skidmore, E.L.; Thomas, A.W.; Tyler, D.D.; Williams, J.R. Cover Crop Effects on Soil Erosion by Wind and Water. In Cover Crops for Clean Water; Hargrove, W.L., Ed.; Soil and Water Conservation Society: Ankeny, IA, USA, 1991; pp. 15–22.
[15]  Dapaah, H.K.; Vyn, T.J. Nitrogen fertilization and cover crop effects on soil structural stability and corn performance. Commun. Soil Sci. Plant Anal. 1998, 29, 2557–2569, doi:10.1080/00103629809370134.
[16]  Kaspar, T.C.; Radke, J.K.; Laflen, J.M. Small grain cover crops and wheel traffic effects on infiltration, runoff, and erosion. J. Soil Water Conserv. 2001, 56, 160–164.
[17]  Reicosky, D.C.; Forcella, F. Cover crop and soil quality interactions in agroecosystems. J. Soil Water Conserv. 1998, 53, 224–229.
[18]  Willson, T.C.; Paul, E.A.; Harwood, R.R. Biologically active soil organic matter fractions in sustainable cropping systems. Appl. Soil Ecol. 2001, 16, 63–76, doi:10.1016/S0929-1393(00)00077-9.
[19]  Haynes, R.J.; Swift, R.S.; Stephen, R.C. Influence of mixed cropping rotations (pasture-arable) on organic matter content, water stable aggregation and clod porosity in a group of soils. Soil Tillage Res. 1991, 19, 77–87, doi:10.1016/0167-1987(91)90111-A.
[20]  Hu, S.; Grunwald, N.J.; van Bruggen, A.H.C.; Gamble, G.R.; Drinkwater, L.E.; Shennan, C.; Demment, M.W. Short-term effects of cover crop incorporation on soil carbon pools and nitrogen availability. Soil Sci. Soc. Am. J. 1997, 61, 901–911, doi:10.2136/sssaj1997.03615995006100030027x.
[21]  Carter, M.R.; Kunelius, H.T. Effect of undersowing barley with annual ryegrasses or red clover on soil structure in a barley-soybean rotation. Agric. Ecosyst. Environ. 1993, 43, 245–254.
[22]  Fisk, J.W.; Hesterman, O.B.; Shrestha, A.; Kells, J.J.; Harwood, R.R.; Squire, J.M.; Sheaffer, C.C. Weed suppression by annual legume cover crops in no-tillage corn. Agron. J. 2001, 93, 319–325, doi:10.2134/agronj2001.932319x.
[23]  Singer, J.; Cox, W.J.; Hahn, R.R.; Shields, E.J. Cropping system effects on weed emergence and densities in corn. Agron. J. 2000, 92, 754–760, doi:10.2134/agronj2000.924754x.
[24]  Hiltbrunner, J.; Liedgens, M.; Bloch, L.; Stamp, P.; Streit, B. Legume cover crops as living mulches for winter wheat: Components of biomass and the control of weeds. Eur. J. Agron. 2007, 26, 21–29, doi:10.1016/j.eja.2006.08.002.
[25]  Mutch, D.R.; Martin, T.E.; Kosola, K.R. Red clover (Trifolium pratense) suppression of common ragweed (Ambrosia) in winter wheat (Triticum aestivum). Weed Technol. 2003, 17, 181–185, doi:10.1614/0890-037X(2003)017[0181:RCTPSO]2.0.CO;2.
[26]  Raimbault, B.A.; Vyn, T.J. Crop rotation and tillage effects on corn growth and soil structural stability. Agron. J. 1991, 83, 979–985, doi:10.2134/agronj1991.00021962008300060011x.
[27]  Unger, P.W.; Merle, F. Cover crop effects on soil water relationships. J. Soil Water Conserv. 1998, 53, 200–207.
[28]  Sarrantonio, M.; Gallandt, E. The role of cover crops in north American cropping systems. J. Crop Prod. 2003, 8, 53–74, doi:10.1300/J144v08n01_04.
[29]  Varco, J.; Frye, W.; Smith, M.; MacKown, C. Tillage effects on nitrogen recovery by corn from a nitrogen-15 labeled legume cover crop. Soil Sci. Soc. Am. J. 1989, 53, 822–827, doi:10.2136/sssaj1989.03615995005300030033x.
[30]  McVay, K.; Radcliffe, D.; Hargrove, W. Winter legume effects on soil properties and nitrogen fertilizer requirements. Soil Sci. Soc. Am. J. 1989, 53, 1856–1862.
[31]  Kuo, S.; Sainju, U. Nitrogen mineralization and availability of mixed leguminous and non-leguminous cover crop residues in soil. Biol. Fertil. Soils 1998, 26, 346–353, doi:10.1007/s003740050387.
[32]  Vicia, L.; Roth, V. Winter legumes as a nitrogen source for no-till grain sorghum. Agron. J. 1986, 78, 70–74.
[33]  Oyer, L.J.; Touchton, J.T. Utilizing legume cropping systems to reduce nitrogen fertilizer requirements for conservation-tilled corn. Agron. J. 1990, 82, 1123–1127, doi:10.2134/agronj1990.00021962008200060020x.
[34]  Odhiambo, J.; Bomke, A. Grass and legume cover crop effects on dry matter and nitrogen accumulation. Agron. J. 2001, 93, 299–307, doi:10.2134/agronj2001.932299x.
[35]  Vyn, T.J.; Faber, J.G.; Janovicek, K.J.; Beauchamp, E.G. Cover crop effects on nitrogen availability to corn following wheat. Agron. J. 2000, 92, 915–924.
[36]  Bruulsema, T.W.; Christie, B.R. Nitrogen contribution to succeeding corn from alfalfa and red clover. Agron. J. 1987, 79, 96–100, doi:10.2134/agronj1987.00021962007900010020x.
[37]  Pieters, A. Green Manuring, Principles and Practice; John Wiley & Sons Inc: New York, NY, USA, 1927; p. 356.
[38]  Singer, J. Corn Belt assessment of cover crop management and preferences. Agron. J. 2008, 100, 1670–1672, doi:10.2134/agronj2008.0151.
[39]  Singer, J.W.; Nusser, S.M.; Alf, C.J. Are cover crops being used in the US Corn Belt? J. Soil Water Conserv. 2007, 62, 353–358.
[40]  Crop Harvested Area 2010. FAO FAOSTAT Web site, Available online: http://faostat3.fao.org/home/index.html (accessed on 5 November 2012).
[41]  Liebig, M.A.; Varvel, G.E.; Doran, J.W.; Wienhold, B.J. Crop sequence and nitrogen fertilization effects on soil properties in the western Corn Belt. Soil Sci. Soc. Am. J. 2002, 66, 596–601, doi:10.2136/sssaj2002.0596.
[42]  Hussain, S.K.; Mlelke, L.N.; Skopp, J. Detachment of soil as affected by fertility management and crop rotations. Soil Sci. Soc. Am. J. 1988, 52, 1463–1468, doi:10.2136/sssaj1988.03615995005200050049x.
[43]  Fahad, A.A.; Mielke, L.N.; Flowerday, A.D.; Swartzendruber, D. Soil physical properties as affected by soybean and other cropping sequences. Soil Sci. Soc. Am. J. 1982, 46, 377–381, doi:10.2136/sssaj1982.03615995004600020033x.
[44]  Miles, R.J.; Brown, J.R. The sanborn field experiment: Implications for long-term soil organic carbon levels. Agron. J. 2011, 103, 268–278.
[45]  Studdert, G.; Echeverria, H. Crop rotations and nitrogen fertilization to manage soil organic carbon dynamics. Soil Sci. Soc. Am. J. 2000, 64, 1496–1503, doi:10.2136/sssaj2000.6441496x.
[46]  Varvel, G.E. Rotation and nitrogen fertilization effects on changes in soil carbon and nitrogen. Agron. J. 1994, 86, 319–325, doi:10.2134/agronj1994.00021962008600020021x.
[47]  Havlin, J.; Kissel, D.; Maddux, L.; Claassen, M.; Long, J. Crop rotation and tillage effects on soil organic carbon and nitrogen. Soil Sci. Soc. Am. J. 1990, 54, 448–452, doi:10.2136/sssaj1990.03615995005400020026x.
[48]  Yamoah, C.F.; Varvel, G.E.; Waltman, W.J.; Francis, C.A. Long-term nitrogen use and nitrogen-removal index in continuous crops and rotations. Field Crop Res. 1998, 57, 15–27.
[49]  Varvel, G.E.; Peterson, T.A. Residual soil nitrogen as affected by continuous, two-year, and four-year crop rotation systems. Agron. J. 1990, 82, 958–962, doi:10.2134/agronj1990.00021962008200050024x.
[50]  Miller, D.R.; Chen, S.Y.; Porter, P.M.; Johnson, G.A.; Wyse, D.L.; Stetina, S.R.; Klossner, L.D.; Nelson, G.A. Rotation crop evaluation for management of the soybean cyst nematode in Minnesota. Agron. J. 2006, 98, 569–578, doi:10.2134/agronj2005.0185.
[51]  Snapp, S.S.; Swinton, S.M.; Labarta, R.; Mutch, D.; Black, J.R.; Leep, R.; Nyiraneza, J. Evaluating cover crops for benefits, costs and performance within cropping system niches. Agron. J. 2005, 97, 322–332.
[52]  Fowler, D.B. Wheat production in the high winter stress climate of the great plains of north America—An experiment in crop adaptation. Crop Sci. 2012, 52, 11–20, doi:10.2135/cropsci2011.05.0279.
[53]  Blackshaw, R.E.; Molnar, L.J.; Moyer, J.R. Suitability of legume cover crop-winter wheat intercrops on the semi-arid Canadian prairies. Can. J. Plant Sci. 2010, 90, 479–488, doi:10.4141/CJPS10006.
[54]  Martens, J.R.T.; Hoeppner, J.W.; Entz, M.H. Legume cover crops with winter cereals in southern Manitoba: Establishment, productivity, and microclimate effects. Agron. J. 2001, 93, 876–883.
[55]  Hesterman, O.B.; Griffin, T.S.; Willimas, P.T.; Harris, G.H.; Christenson, D.R. Forage Legume-small grain intercrops: Nitrogen production and response of subsequent corn. J. Prod. Agric. 1992, 5, 340–348.
[56]  Schipanski, M.E.; Drinkwater, L.E. Nitrogen fixation of red clover interseeded with winter cereals across a management-induced fertility gradient. Nutr. Cycl. Agroecos. 2010, 90, 105–119.
[57]  Hartl, W. Influence of undersown clovers on weeds and on the yield of winter wheat in organic farming. Agric. Ecosyst. Environ. 1989, 27, 389–396, doi:10.1016/0167-8809(89)90099-6.
[58]  Tiffin, P.; Hesterman, O.B. Response of corn grain yield to early and late killed red clover green manure and subirrigation. J. Prod. Agric. 1998, 11, 112–121.
[59]  Stute, J.K.; Posner, J.L. Legume cover crop options for grain rotations in Wisconsin. Agron. J. 1993, 85, 1128–1132, doi:10.2134/agronj1993.00021962008500060006x.
[60]  Fertilizer Use and Price Index. USDA-ERS Web site, Available online: http://www.ers.usda.gov/data-products/fertilizer-use-and-price.aspx (accessed on 5 November 2012).
[61]  Deen, B. University of Guelph, Guelph, Canada, 2012. Personal Communication.
[62]  Gibson, L.; Singer, J.; Barnhart, S.; Blaser, B. Intercropping Winter Cereal Grains and Red Clover; Technical Report PM 2025 for Iowa State University Extension: Ames, IA, USA, 2006.
[63]  Clark, A. Red Clover. In Managing Cover Crops Profitably; Sustainable Agriculture Network: Beltsville, MD, USA, 2007; pp. 159–164.
[64]  Madill, J.; Skepasts, A. Red clover in Ontario; Technical Report No. 81-080; Ontario Ministry of Agriculture and Food: Toronto, Canada, 1981.
[65]  Singer, J.; Casler, M.D.; Kohler, K.A. Wheat effect on frost-seeded red clover cultivar establishment and yield. Agron. J. 2006, 98, 265–269, doi:10.2134/agronj2005.0037.
[66]  Meyer, D.W.; Badaruddin, M. Frost tolerance of ten seedling legume species at four growth stages. Crop Sci. 2001, 41, 1838–1842, doi:10.2135/cropsci2001.1838.
[67]  Blaser, B.C.; Gibson, L.R.; Singer, J.W.; Jannink, J.-L. Optimizing seeding rates for winter cereal grains and frost-seeded red clover intercrops. Agron. J. 2006, 98, 1041–1049, doi:10.2134/agronj2005.0340.
[68]  Blaser, B.C.; Singer, J.W.; Gibson, L.R. Winter cereal, seeding rate, and intercrop seeding rate effect on red clover yield and quality. Agron. J. 2007, 99, 723–729, doi:10.2134/agronj2006.0247.
[69]  Singer, J.; Meek, D.W. Relationship between interseeded red clover biomass and plant number. Crop Sci. 2012, 52, 981–985.
[70]  Blaser, B.C.; Singer, J.W.; Gibson, L.R. Winter cereal canopy effect on cereal and interseeded legume productivity. Agron. J. 2011, 103, 1180–1185, doi:10.2134/agronj2010.0506.
[71]  Queen, A.; Earl, H.; Deen, W. Light and moisture competition effects on biomass of red clover underseeded to winter wheat. Agron. J. 2009, 101, 1511–1521, doi:10.2134/agronj2008.0163.
[72]  Garand, M.J.; Simard, R.R.; MacKenzie, A.F.; Hamel, C. Underseeded clover as a nitrogen source for spring wheat on a gleysol. Can. J. Soil Sci. 2001, 81, 93–102.
[73]  Kunelius, H.T.; Johnston, H.W.; Macleod, J.A. Effect of undersowing barley with Italian ryegrass or red clover on yield, crop composition and root biomass. Agric. Ecosyst. Environ. 1992, 38, 127–137, doi:10.1016/0167-8809(92)90138-2.
[74]  Katsvairo, T.; Cox, W.J.; van Es, H. Tillage and rotation effects on soil physical characteristics. Agron. J. 2002, 94, 121–125.
[75]  Drury, C.F.; Tan, C.-S.; Welacky, T.W.; Oloya, T.O.; Hamill, A.S.; Weaver, S.E. Red clover and tillage influence on soil temperature, water content, and corn emergence. Agron. J. 1999, 91, 101–108, doi:10.2134/agronj1999.00021962009100010016x.
[76]  Brandt, J.E.; Hons, F.M.; Haby, A. Effects of subterranean clover interseeding on grain yield, yield components, and nitrogen content of soft red winter wheat. J. Prod. Agric. 1989, 2, 347–351.
[77]  Singer, J.; Cox, W.J. Corn growth and yield under different crop rotation, tillage, and management systems. Crop Sci. 1998, 38, 996–1003, doi:10.2135/cropsci1998.0011183X003800040019x.
[78]  Legere, A.; Stevenson, F.C.; Samson, N. Tillage and weed management effects on forage production in a barley-red clover rotation. Can. J. Plant Sci. 2001, 81, 405–412.
[79]  Fribourg, H.A.; Johnson, I.J. Dry matter and nitrogen yields of legume tops and roots in the fall of the seeding year. Agron. J. 1955, 47, 73–77.
[80]  Blaser, B.C.; Singer, J.W.; Gibson, L.R. Winter wheat and red clover intercrop response to tillage and compost amendment. Crop Sci. 2012, 52, 320–326, doi:10.2135/cropsci2011.05.0268.
[81]  Deen, B.; Earl, H. Impact of Winter Wheat Management on Underseeded Red Clover. In Proceedings of the American Society of Agronomy International Meeting, Indianapolis, IN, USA, 12–16 November 2006.
[82]  Nass, H.G.; Papadopolous, Y.; MacLeod, J.A.; Caldwell, C.D.; Walker, D.F. Nitrogen management of spring milling wheat underseeded with red clover. Can. J. Plant Sci. 2002, 82, 653–659, doi:10.4141/P01-142.
[83]  Vyn, T.J.; Janovicek, K.J.; Miller, M.; Beauchamp, E. Soil nitrate accumulation and corn response to preceding small-grain fertilization and cover crops. Agron. J. 1999, 91, 17–24, doi:10.2134/agronj1999.00021962009100010004x.
[84]  Janovicek, K.J.; Vyn, T.J.; Voroney, R. No-till corn response to crop rotation and in-row residue placement. Agron. J. 1997, 89, 588–596, doi:10.2134/agronj1997.00021962008900040009x.
[85]  Serran, S. Nitrogen Dynamics and Corn Growth in Manure/Cover Crop Systems. Ph.D. Dissertation, University of Guelph, Guelph, Canada, 2005.
[86]  Stute, J.K.; Posner, J.L. Synchrony between legume nitrogen release and corn demand in the upper Midwest. Agron. J. 1995, 87, 1063–1069, doi:10.2134/agronj1995.00021962008700060006x.
[87]  Singer, J.; Sauer, T.J.; Blaser, B.C.; Meek, D.W. Radiation use efficiency in dual winter cereal–forage production systems. Agron. J. 2007, 99, 1175–1179, doi:10.2134/agronj2007.0033.
[88]  Bowren, K.; Cooke, D.; Downey, R. Yield of dry matter and nitrogen from tops and roots of sweetclover, alfalfa and red clover at five stages of growth. Can. J. Plant Sci. 1969, 49, 61–68, doi:10.4141/cjps69-007.
[89]  Bray, J.R. Root production and the estimation of net productivity. Can. J. Bot. 1963, 41, 65–72, doi:10.1139/b63-007.
[90]  Bolinder, M.A.; Angers, D.A.; Bélanger, G.; Michaud, R.; Laverdière, M.R. Root biomass and shoot to root ratios of perennial forage crops in eastern Canada. Can. J. Plant Sci. 2002, 82, 731–737, doi:10.4141/P01-139.
[91]  Mallory, E.B.; Posner, J.L.; Baldock, J.O. Performance, economics, and adoption of cover crops in Wisconsin cash grain rotations: On-farm trials. Am. J. Altern. Agric. 1998, 13, 2–11, doi:10.1017/S0889189300007578.
[92]  Sarrantonio, M.; Scott, T. Tillage effects on availability of nitrogen to corn following a winter green manure crop. Soil Sci. Soc. Am. J. 1988, 52, 1661–1668, doi:10.2136/sssaj1988.03615995005200060029x.
[93]  Groffman, P.M.; Hendrix, P.F.; Crossley, D.A., Jr. Nitrogen dynamics in conventional and no-tillage agroecosystems with inorganic fertilizer or legume nitrogen inputs. Plant Soil 1987, 97, 315–332, doi:10.1007/BF02383222.
[94]  Dou, Z.; Fox, R.; Toth, J. Seasonal soil nitrate dynamics in corn as affected by tillage and nitrogen source. Soil Sci. Soc. Am. J. 1995, 59, 858–864.
[95]  Haney, R.L.; Senseman, S.A.; Hons, F.M.; Zuberer, D.A. Effect of glyphosate on soil microbial activity and biomass. Weed Sci. 2000, 48, 89–93, doi:10.1614/0043-1745(2000)048[0089:EOGOSM]2.0.CO;2.
[96]  Haney, R.; Senseman, S.; Krutz, L.; Hons, F. Soil carbon and nitrogen mineralization as affected by atrazine and glyphosate. Biol. Fertil. Soils 2002, 35, 35–40.
[97]  Damin, V.; Trivelin, P. Herbicides Effect on Nitrogen Cycling in Agroecosystems. In Herbicide and Environment; Kortekamp, A., Ed.; InTech: Rijeka, Croatia, 2011.
[98]  Tradiff, F.; Smith, P. Red Clover Tolerance to Different Herbicide Application Timings; Ontario Ministry of Agriculture and Food: Toronto, Canada, 2005.
[99]  Ebelhar, S.A.; Frye, W.W.; Blevins, R.L. Nitrogen from legume cover crops for no-tillage corn. Agron. J. 1984, 76, 51–55, doi:10.2134/agronj1984.00021962007600010014x.
[100]  Wilson, D.; Hargrove, W. Release of nitrogen from crimson clover residue under two tillage systems. Soil Sci. Soc. Am. J. 1986, 50, 1251–1254.
[101]  Ranells, N.N.; Wagger, M.G. Nitrogen-15 recovery and release by rye and crimson clover cover crops. Soil Sci. Soc. Am. J. 1997, 61, 943–948.
[102]  Wagger, M.G. Cover crop management and nitrogen rate in relation to growth and yield of no-till corn. Agron. J. 1989, 81, 533–538.
[103]  Drury, C.F.; Tan, C.S.; Reynolds, W.D.; Welacky, T.W.; Weaver, S.E.; Hamill, A.S.; Vyn, T.J. Impacts of zone tillage and red clover on corn performance and soil physical quality. Soil Sci. Soc. Am. J. 2003, 67, 867–877.
[104]  Drinkwater, L.E.; Wagoner, P.; Sarrantonio, M. Legume-based cropping systems have reduced carbon and nitrogen losses. Nature 1998, 396, 262–265, doi:10.1038/24376.
[105]  Rice, C.W.; Grove, J.H.; Smith, M.S. Estimating soil net nitrogen mineralization as affected by tillage and soil drainage due to topographic position. Can. J. Soil Sci. 1987, 67, 513–520.
[106]  Davis, A.S.; Hill, J.D.; Chase, C.A.; Johanns, A.M.; Liebman, M. Increasing cropping system diversity balances productivity, profitability and environmental health. PloS One 2012, 7, 1–8.
[107]  Meyer-Aurich, A.; Janovicek, K.; Deen, W.; Weersink, A. Impact of tillage and rotation on yield and economic performance in corn-based cropping systems. Agron. J. 2006, 98, 1204–1212.
[108]  Janzen, H.H.; Bole, J.B.; Biederbeck, V.O.; Slinkard, A.E. Fate of N applied as green manure of ammonium sulphate fertilizer to soil subsequently cropped with spring wheat in three sites in western Canada. Can. J. Soil Sci. 1990, 70, 313–323.
[109]  Ladd, J.N.; Amato, M.; Jackson, R.B.; Butler, J.H.A. Utilization by wheat crops of nitrogen from legume residues decomposing in the field. Soil Biol. Biochem. 1983, 15, 231–238.
[110]  Drury, C.; Stone, J.; Findlay, W. Microbial biomass and soil structure associated with corn, grasses, and legumes. Soil Sci. Soc. Am. J. 1991, 55, 805–811.
[111]  Adams, W.; Morris, H.D.; Dawson., R.N. Effect of cropping systems and nitrogen levels on corn (Zea mays) yields in the southern piedmont region. Agron. J. 1970, 62, 655–659, doi:10.2134/agronj1970.00021962006200050033x.
[112]  Henry, D.C.; Mullen, R.W.; Dygert, C.E.; Diedrick, K.A.; Sundermeier, A. Nitrogen contribution from red clover for corn following wheat in western Ohio. Agron. J. 2010, 102, 210–215, doi:10.2134/agronj2009.0187.
[113]  Stanger, T.F.; Lauer, J.G. Corn grain yield response to crop rotation and nitrogen over 35 years. Agron. J. 2008, 100, 643–650, doi:10.2134/agronj2007.0280.
[114]  Bolton, E.F.; Dirks, V.A.; Findlay, W.I. Some relationships between soil porosity, leaf nutrient composition and yield for certain corn rotations at two fertility levels on Brookston clay. Can. J. Plant Sci. 1979, 59, 1–9, doi:10.4141/cjps79-001.
[115]  Miguez, F.E.; Bollero, G.A. Review of corn yield response under winter cover cropping systems using meta-analytic methods. Crop Sci. 2005, 45, 2318–2329, doi:10.2135/cropsci2005.0014.
[116]  Hively, W.D.; Cox, W.J. Interseeding cover crops into soybean and subsequent corn yields. Agron. J. 2001, 93, 308–313, doi:10.2134/agronj2001.932308x.
[117]  Benson, G.O. Why the Reduced Yields When Corn Follows Corn and Possible Management Responses. In Proceedings of the Corn and Sorghum Research Conference, Chicago, IL, USA, 11–13 December 1985; pp. 161–174.
[118]  Copeland, P.; Crookston, P. Crop sequence affects nutrient composition of corn and soybean grown under high fertility. Agron. J. 1992, 84, 503–509, doi:10.2134/agronj1992.00021962008400030028x.
[119]  Copeland, J.; Allmaras, R.R.; Crookston, R.K.; Nelson, W.W. Corn-soybean rotation effects on soil water depletion. Agron. J. 1993, 85, 203–210, doi:10.2134/agronj1993.00021962008500020008x.
[120]  Johnson, N.C.; Copeland, P.J.; Crookston, R.K.; Pfleger, F.L. Mycorrhizae: Possible explanation for yield decline with continuous corn and soybean. Agron. J. 1992, 84, 387–390, doi:10.2134/agronj1992.00021962008400030007x.
[121]  Corak, S.J.; Frye, W.W.; Smith, M.S. Legume mulch and nitrogen fertilizer effects on soil water and corn production. Soil Sci. Soc. Am. J. 1991, 55, 1395–1400, doi:10.2136/sssaj1991.03615995005500050032x.
[122]  Utomo, M.; Frye, W.W.; Blevins, R.L. Sustaining soil nitrogen for corn using hairy vetch cover crop. Agron. J. 1990, 82, 979–983, doi:10.2134/agronj1990.00021962008200050028x.
[123]  Deen, B.; Janovicek, K.; Stewart, G. Influence of Red Clover on Maize Nitrogen Recommendations in Eastern Canada. In Proceedings of IX European Society for Agronomy Congress, Warsaw, Poland, 4–7 September 2006.
[124]  Janovicek, K.; Stewart, G.A. Updating General Fertilizer Nitrogen Recommendations for Corn in Ontario. In Proceedings of the 34th North Central Extension-Industry Soil Fertility Conference, Des Moines, IA, USA, 17–18 November 2004; pp. 12–19.
[125]  Angers, D.A.; Mehuys, G.R. Aggregate Stability to Water. In Soil Sampling and Methods of Analysis; Carter, M.R., Ed.; Lewis Publishers: Boca Raton, FL, USA, 1993; pp. 651–658.
[126]  Stone, J.; Butterly, B. Nine forages and the aggreagtion of a clay loam soil. Can. J. Soil Sci. 1989, 69, 165–169.
[127]  Six, J.; Elliott, E.T.; Paustian, K. Aggregate and soil organic matter dynamics under conventional and no-tillage systems. Soil Sci. Soc. Am. J. 1999, 63, 1350–1358.
[128]  Kemper, W.D.; Rosenau, R.C. Aggregate Stability and Size Distribution. In Methods of Soil Analysis; Klute, A., Ed.; Soil Science Society of America: Madison, WI, USA, 1986; pp. 425–442.
[129]  Broersma, K.; Robertson, J.A.; Chanasyk, D.S. The effects of diverse cropping systems on aggregation of a luvisolic soil in the peace river region. Can. J. Soil Sci. 1997, 77, 323–329.
[130]  Lynch, J.M.; Bragg, E. Microorganisms and Soil Aggregate Stability. In Advances in Soil Science; Stewart, B.A., Ed.; Spriger: New York, NY, USA, 1985; Volume 2, pp. 133–171.
[131]  Baldock, J.A.; Kay, B.D. Influence of cropping history and chemical treatments on the water-stable aggregation of a silt loam. Can. J. Soil Sci. 1987, 67, 501–511, doi:10.4141/cjss87-047.
[132]  Morin, J.; Benyamini, Y.; Michaeli, A. The effect of raindrop impact on the dynamics of soil surface crusting and water movement in the profile. J. Hydrol. 1981, 52, 321–335, doi:10.1016/0022-1694(81)90178-5.
[133]  Carter, M.R. Soil quality for sustainable land management: Organic matter and aggregation interactions that maintain soil function. Agron. J. 2002, 94, 38–47, doi:10.2134/agronj2002.0038.
[134]  Brady, N.C.; Weil, R.R. The Nature and Properties of Soils; Prentice Hall: Upper Saddle River, NJ, USA, 2008.
[135]  Hudson, B. Soil organic matter and available water capacity. J. Soil Water Conserv. 1994, 49, 189–194.
[136]  Allison, F.E. Soil Organic Matter and Its Role in Crop Production; Elsevier: Amsterdam, The Netherlands, 1973.
[137]  Bot, A.; Benites, J. The Importance of Soil Organic Matter; FAO: Rome, Italy, 2005.
[138]  Patriquin, D. Water, Soil and Organic Matter: A Complex Relationship. The Canadian Organic Grower, Fall 2004. Available online: http://www.cog.ca/documents/Water.pdf (accessed on 9 November 2012).
[139]  Osborne, S.; Schumacher, T.; Humburg, D. Evaluation of cover crops to increase corn emergence, yield and field trafficability. Agric. J. 2008, 3, 397–400.
[140]  Reynolds, W.D.; Bowman, B.T.; Brunke, R.R.; Drury, C.F.; Tan, C.S. Comparison of tension infiltrometer, pressure infiltrometer, and soil core estimates of saturated hydraulic conductivity. Soil Sci. Soc. Am. J. 2000, 64, 478–484, doi:10.2136/sssaj2000.642478x.
[141]  Kanneganti, V.R.; Kaffka, S.R. Forage availability from a temperate pasture managed with intensive rotational grazing. Grass Forage Sci. 1995, 50, 55–62, doi:10.1111/j.1365-2494.1995.tb02294.x.
[142]  Ewing, R.P.; Wagger, M.G.; Denton, H.P. Tillage and cover crop management effects on soil water and corn yield. Soil Sci. Soc. Am. J. 1991, 55, 1081–1085.
[143]  Johnson, M.D.; Lowery, B. Effect of three conservation tillage practices on soil temperature and thermal properties. Soil Soc. Sci. Am. J. 1985, 49, 1547–1552.
[144]  Alessi, J.; Power, J.F. Corn emergence in relation to soil temperature and seeding depth. Agron. J. 1971, 65, 717–719, doi:10.2134/agronj1971.00021962006300050018x.
[145]  Lei, T.; Zhan, W.; Xiao, J.; Huang, X.; Mao, J. Water use efficiency of a mixed cropping system of corn with grasses. Int. J. Sustain. Dev. World Ecol. 2009, 12, 37–41.
[146]  Russell, C.; Fillery, I. Estimates of lupin below-ground biomass nitrogen, dry matter, and nitrogen turnover to wheat. Aust. J. Agric. Res. 1996, 47, 1047–1059, doi:10.1071/AR9961047.
[147]  McNeill, A.; Zhu, C.; Fillery, I. Use of in situ 15N-labelling to estimate the total below-ground nitrogen of pasture legumes in intact soil–plant systems. Aust. J. Agric. Res. 1997, 8, 295–304.
[148]  Sheard, R.W.; Bruulsema, T.W.; Christie, B.R. The Utilization of Nitrogen from 15N-Labelled Legume Residues by Barley. In Proceedings of the 29th National Alfalfa Improvement Conference, Lethbridge, Canada, 15–20 July 1984; p. 34.
[149]  Harris, G.; Hcsterman, O.B.; Paul, E.A.; Peters, S.E. Fate of legume and fertilizer. Agron. J. 1990, 82, 910–915.
[150]  Bergstr?m, L.; Kirchmann, H. Leaching and crop uptake of nitrogen from nitrogen-15-labeled green manures and ammonium nitrate. J. Environ. Qual. 2004, 33, 1786–1792, doi:10.2134/jeq2004.1786.
[151]  Gardner, J.B.; Drinkwater, L.E. The fate of nitrogen in grain cropping systems: A meta-analysis of 15N field experiments. Ecol. Appl. 2009, 19, 2167–2184.
[152]  Yaacob, O.; Blair, G.J. Effect of legume cropping and organic matter accumulation on the infiltration rate and structure stability of a granite soil under a simulated topical environment. Plant Soil 1981, 60, 11–20, doi:10.1007/BF02377108.
[153]  Harris, G.H.; Hesterman, O.B. Quantifying the nitrogen contribution from alfalfa to soil and two succeeding crops using nitrogen-15. Agron. J. 1990, 82, 129–134, doi:10.2134/agronj1990.00021962008200010028x.
[154]  Hanway, J.J. Growth stages of corn (Zea mays L.). Agron. J. 1963, 55, 487–492, doi:10.2134/agronj1963.00021962005500050024x.
[155]  Burity, H.A.; Faris, M.A.; Ta, T.C.; Coulman, B. Fixation and transfer of nitrogen from legumes to grasses under mixed culture conditions. Plant Soil 1989, 114, 249–255, doi:10.1007/BF02220805.
[156]  Davies, D.B.; Sylvester-Bradley, R. The contribution of fertiliser nitrogen to leachable nitrogen in the UK: A review. J. Sci. Food Agric. 1995, 68, 399–406, doi:10.1002/jsfa.2740680402.
[157]  Boller, B.C.; Nosberger, J. Differences in nitrogen fixation among field-grown red clover strains at different levels of 15N fertilization. Euphytica 1994, 78, 167–174.
[158]  Nesheim, L.; ?yen, J. Nitrogen fixation by red clover (Trifolium pratense L.) grown in mixtures with timothy (Phleum pratense L.) at different levels of nitrogen fertilization. Acta Agric. Scand. 1994, 44, 28–34.
[159]  Liebman, M.; Graef, R.; Nettleton, D.; Cambardella, C.A. Use of legume green manures as nitrogen sources for corn production. Renew. Agric. Food Syst. 2012, 27, 180–191, doi:10.1017/S1742170511000299.
[160]  Dorland, S.; Beauchamp, E.G. Denitrification and ammonification at low soil temperature. Can. J. Soil Sci. 1991, 71, 293–303.
[161]  Pelletier, F.; Prevost, D.; Laliberte, G.; van Bochove, E. Seasonal response of denitrifiers to temperature in a Quebec cropped soil. Can. J. Soil Sci. 1999, 79, 551–556, doi:10.4141/S99-022.
[162]  Wagnar-Riddle, C.; Furon, A.; Mclaughlin, N.; Lee, I.; Barbeau, J.; Jayasundara, S.; Parkin, G.; Von Bertoldi, P.; Warland, J. Intensive measurement of nitrous oxide emissions from a corn-soybean-wheat rotation under two contrasting management systems over 5 years. Glob. Chang. Biol. 2007, 3, 1722–1736.
[163]  Miller, M.N.; Zebarth, B.J.; Dandie, C.E.; Burton, D.L.; Goyer, C.; Trevors, J.T. Crop residue influence on denitrification, N2O emissions and denitrifier community abundance in soil. Soil Biol. Biochem. 2008, 40, 2553–2562, doi:10.1016/j.soilbio.2008.06.024.
[164]  Meyer Aurich, A.; Weersink, A.; Janovicek, K.; Deen, B. Cost efficient rotation and tillage options to sequester carbon and mitigate GHG emissions from agriculture in eastern Canada. Agric. Ecosyst. Environ. 2006, 117, 119–127, doi:10.1016/j.agee.2006.03.023.
[165]  Lynch, D. Environmental impacts of organic agriculture: A Canadian perspective. Can. J. Plant Sci. 2009, 3, 621–628, doi:10.4141/CJPS08165.
[166]  Holling, C. Resilience and stability of ecological systems. Annu. Rev. Ecol. Syst. 1973, 4, 1–23.
[167]  Teasdale, J.; Brands?ter, L.; Calegari, A.; Neto, F.S. Cover Crops and Weed Management. In Non-Chemical Weed Management: Principles, Concepts and Techology; Upadhyaya, M.K., Blackshaw, R.E., Eds.; CABI International: Oxfordshire, UK, 2007; pp. 49–64.
[168]  Nelson, W.A.; Kahn, B.A.; Roberts, B.W. Screening cover crops for use in conservation tillage systems for vegetables following spring plowing. Hortic. Sci. 1991, 26, 860–862.
[169]  Blackshaw, R.E.; Moyer, J.R.; Doram, R.C.; Boswall, A.L.; Smith, E.G.; Linum, L. Suitability of undersown sweetclover as a fallow replacement in semiarid cropping systems. Agron. J. 2001, 93, 863–868, doi:10.2134/agronj2001.934863x.
[170]  Brands?ter, L.O.; Goul Thomsen, M.; W?rnhus, K.; Fykse, H. Effects of repeated clover undersowing in spring cereals and stubble treatments in autumn on Elymus repens, Sonchus arvensis and Cirsium arvense. Crop Prot. 2012, 32, 104–110, doi:10.1016/j.cropro.2011.09.022.
[171]  Ross, S.M.; King, J.R.; Izaurralde, R.C.; Donovan, J.T.O. Weed suppression by seven clover species. Agron. J. 2001, 93, 820–827, doi:10.2134/agronj2001.934820x.
[172]  Power, J. Legume and Crop Rotations. In Sustainable Agriculture in Temperate Zones; Francis, C.A., Butler Flora, C., King, L.D., Eds.; John Wisley & Sons, Inc.: New York, NY, USA, 1990; pp. 178–204.
[173]  Liebman, M.; Davis, A.S. Integration of soil, crop and weed management in low-external-input farming systems. Weed Res. 2000, 40, 27–47.
[174]  Lin, B.B. Resilience in agriculture through crop diversification: Adaptive management for environmental change. BioScience 2011, 61, 183–193, doi:10.1525/bio.2011.61.3.4.
[175]  Chen, S.; Wyse, D.L.; Johnson, G.A.; Porter, P.M.; Stetina, S.R.; Miller, D.R.; Betts, K.J.; Klossner, L.D.; Haar, M.J. Effect of cover crops alfalfa, red clover, and perennial ryegrass on soybean cyst nematode population and soybean and corn yields in minnesota. Crop Sci. 2006, 46, 1890–1897, doi:10.2135/cropsci2005.09-0296.
[176]  Branson, T.F.; Ortman, E.E. The host range of larvae of the western corn rootworm: Further studies. J. Econ. Entomol. 1970, 63, 800–803.
[177]  Nicholson, A.G.; Wien, H.C. Screening of turfgrass and clovers for use as living mulches in sweet corn and cabbage. J. Am. Soc. Hortic. Sci. 1983, 108, 1071–1076.
[178]  Skarphol, B.J.; Corey, K.A.; Meisinger, J.J. Response of snap beans to tillage and cover crop combinations. J. Am. Soc. Hortic. Sci. 1987, 112, 936–941.
[179]  Boyd, N.S.; Gordon, R.; Asiedu, S.K.; Martin, R.C. The effects of living mulches on tuber yields of potato (Solanum tuberosum L.). Biol. Agric. Hortic. 2001, 18, 203–220, doi:10.1080/01448765.2001.9754884.
[180]  Martin, R.C.; Greyson, P.R.; Gordon, R. Competition between corn and a living mulch. Can. J. Plant Sci. 1999, 79, 579–586.
[181]  Tisdall, J.; Oades, J. Stabilization of soil aggregates by the root systems of ryegrass. Aust. J. Soil Res. 1979, 17, 429–441, doi:10.1071/SR9790429.
[182]  Curaqueo, G.; Acevedo, E.; Cornejo, P.; Seguel, A.; Rubio, R.; Borie, F. Tillage effect on soil organic matter, mycorrhizal hyphae and aggregates in a mediterranean agroecosystem. Revista de la ciencia del suelo y nutrición vegetal 2010, 10, 12–21.
[183]  Brito, I.; Goss, M.J.; de Carvalho, M.; Chatagnier, O.; van Tuinen, D. Impact of tillage system on arbuscular mycorrhiza fungal communities in the soil under Mediterranean conditions. Soil Tillage Res. 2012, 121, 63–67, doi:10.1016/j.still.2012.01.012.
[184]  Brito, I.; Goss, M.J.; de Carvalho, M. Effect of tillage and crop on arbuscular mycorrhiza colonization of winter wheat and triticale under Mediterranean conditions. Soil Use Manag. 2012, 28, 202–208, doi:10.1111/j.1475-2743.2012.00404.x.
[185]  Jansa, J.; Mozafar, A.; Anken, T.; Ruh, R.; Sanders, I.R.; Frossard, E. Diversity and structure of AMF communities as affected by tillage in a temperate soil. Mycorrhiza 2002, 12, 225–234, doi:10.1007/s00572-002-0163-z.
[186]  Deguchi, S.; Shimazaki, Y.; Uozumi, S.; Tawaraya, K.; Kawamoto, H.; Tanaka, O. White clover living mulch increases the yield of silage corn via arbuscular mycorrhizal fungus colonization. Plant Soil 2007, 291, 291–299, doi:10.1007/s11104-007-9194-8.
[187]  Lehman, R.M.; Taheri, W.I.; Osborne, S.L.; Buyer, J.S.; Douds, D.D. Fall cover cropping can increase arbuscular mycorrhizae in soils supporting intensive agricultural production. Appl. Soil Ecol. 2012, 61, 300–304, doi:10.1016/j.apsoil.2011.11.008.
[188]  Tobar, R.M.; Azcon, R.; Barea, J.M. The improvement of plant n acquisition from an ammonium-treated, drought-stressed soil by the fungal symbiont in arbuscular mycorrhizae. Mycorrhiza 1994, 4, 105–108, doi:10.1007/BF00203769.
[189]  Karaki, G.N.; Clark, R.B. Growth, mineral acquisition, and water use by mycorrhizal wheat grown under water stress. J. Plant Nutr. 1998, 21, 263–276, doi:10.1080/01904169809365401.
[190]  Gregorich, E.G.; Carter, M.R.; Angers, D.A.; Monreall, C.M.; Ellerta, B.H. Towards a minimum data set to assess soil organic matter quality in agricultural soils. Can. J. Soil Sci. 1994, 74, 367–385.
[191]  Griffith, D.R.; Kladivko, E.J.; Mannering, J.V.; West, T.D.; Parsons, S.D. Long-term tillage and rotation effects on corn growth and yield on high and low organic matter, poorly drained soils. Agron. J. 1988, 80, 599–605, doi:10.2134/agronj1988.00021962008000040011x.
[192]  Arbuckle, G.; Ferrell, J. Attitudes toward Cover Crops in Iowa: Benefits and Barriers; Technical Report for Iowa State University Extension PMR 1010; Iowa department of Agriculture and Land Stewarship: Ames, IA, USA, 2012.
[193]  Ngalla, C.F.; Eckert, D.J. Wheat-Red Clover Interseeding As a Nitrogen Source For Corn. In Proceedings of the Annual Conference of the Soil and Water Conservation Society of America, Ankeny, IA, USA, 5 August 1987; pp. 47–48.
[194]  Jones, L.; Clements, R. Development of a low input system for growing wheat (Triticum vulgare) in a permanent understorey of white clover (Trifolium repens). Ann. Appl. Biol. 1993, 123, 109–119, doi:10.1111/j.1744-7348.1993.tb04078.x.
[195]  Agriculture and Agri-Food Canada. Canadian farm fuel and fertilizer: Prices and expenses. Market Outlook Rep. 2010, 2, 1–8.
[196]  Tilman, D.; Cassman, K.G.; Matson, P.A.; Naylor, R.; Polasky, S. Agricultural sustainability and intensive production practices. Nature 2002, 418, 671–677, doi:10.1038/nature01014.
[197]  Fuhrer, J. Agroecosystem responses to combinations of elevated CO2, ozone, and global climate change. Agric. Ecosyst. Environ. 2003, 97, 1–20, doi:10.1016/S0167-8809(03)00125-7.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413