全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Agronomy  2013 

Effects of Previous Crop Management, Fertilization Regime and Water Supply on Potato Tuber Proteome and Yield

DOI: 10.3390/agronomy3010059

Keywords: 2D-electrophoresis, chicken manure pellets, cattle manure, fertilization regime, potato, protein profile, Solanum tuberosum, water use

Full-Text   Cite this paper   Add to My Lib

Abstract:

There is increasing concern about the sustainability and environmental impacts of mineral fertilizer use in agriculture. Increased recycling of nutrients via the use of animal and green manures and fertilizers made from domestic organic waste may reduce reliance on mineral fertilizers. However, the relative availability of nutrients (especially nitrogen) is lower in organic compared to mineral fertilizers, which can result in significantly lower yields in nutrient demanding crops such as potato. It is therefore important to gain a better understanding of the factors affecting nutrient use efficiency (yield per unit fertilizer input) from organic fertilizers. Here we show that (a) previous crop management (organic vs. conventional fertilization and crop protection regimes), (b) organic fertilizer type and rate (composted cattle manure vs. composted chicken manure pellets) and (c) watering regimes (optimized and restricted) significantly affected leaf chlorophyll content, potato tuber N-concentration, proteome and yield. Protein inference by gel matching indicated several functional groups significantly affected by previous crop management and organic fertilizer type and rate, including stress/defense response, glycolysis and protein destination and storage. These results indicate genomic pathways controlling crop responses (nutrient use efficiency and yield) according to contrasting types and rates of organic fertilizers that can be linked to the respective encoding genes.

References

[1]  Tilman, D.; Cassman, K.G.; Matson, P.A.; Naylor, R.; Polasky, S. Agricultural sustainability and intensive production practices. Nature 2002, 418, 671–677, doi:10.1038/nature01014.
[2]  Flynn, H.C.; Smith, P. Greenhouse Gas Budgets of Crop Production—Current and Likely Future Trends; International Fertilizer Industry Association: Paris, France, 2010.
[3]  Robertson, G.P.; Vitousek, P.M. Nitrogen in agriculture: Balancing the cost of an essential resource. Ann. Rev. Environ. Resour. 2009, 34, 97–125, doi:10.1146/annurev.environ.032108.105046.
[4]  Cordell, D.; Dangert, J.-O.; White, S. The story of phosphorus: Global food security and food for thought. Glob. Environ. Change 2009, 19, 292–305, doi:10.1016/j.gloenvcha.2008.10.009.
[5]  Fantel, R.J.; Peterson, G.R.; Stowasser, W.F. The worldwide availability of phosphate rock. Nat. Resour. Forum 1985, 9, 5–24, doi:10.1111/j.1477-8947.1985.tb01036.x.
[6]  Trehan, S.P.; Sharma, R.C. Differences in phosphorus use efficiency in potato genotypes. Adv. Hortic. Sci. 2005, 19, 13–20.
[7]  Hepperly, P.; Lotter, D.; Ziegler, C.; Seidel, R.; Reider, C. Compost, manure and synthetic fertilizer influences crop yields, soil properties, nitrate leaching and crop nutrient content. Compost Sci. Util. 2009, 17, 117–126.
[8]  Herencia, J.F.; Ruiz-Porras, J.C.; Melero, S.; Garcia-Galavis, P.A.; Morillo, E.; Maqueda, C. Comparison between organic and mineral fertilization for soil fertility levels, crop macronutrient concentrations, and yield. Agron. J. 2007, 99, 973–983, doi:10.2134/agronj2006.0168.
[9]  Warman, P.R.; Burnham, J.C.; Eaton, L.J. Effects of repeated applications of municipal solid waste compost and fertilizers to three lowbush blueberry fields. Sci. Hortic. 2009, 122, 393–398.
[10]  Eyre, M.D.; Sanderson, R.A.; Shotton, P.N.; Leifert, C. Investigating the effects of crop type, fertility management and crop protection on the activity of beneficial invertebrates in an extensive farm management comparison trial. Ann. Appl. Biol. 2009, 155, 267–276, doi:10.1111/j.1744-7348.2009.00337.x.
[11]  Bulluck, L.R.; Brosius, M.; Evanylo, G.K.; Ristaino, J.B. Organic and synthetic fertility amendments influence soil microbial, physical and chemical properties on organic and conventional farms. Appl. Soil Ecol. 2002, 19, 147–160, doi:10.1016/S0929-1393(01)00187-1.
[12]  The Council Of The European Communities. Council Directive 91/676/EEC of 12 December 1991 concerning the protection of waters against pollution caused by nitrates from agricultural sources. Off. J. Eur. Union 1991, 91/676/EEC, 1–8.
[13]  Van Dijk, J.P.; Cankar, K.; Hendriksen, P.J.M.; Beenen, H.G.; Zhu, M.; Scheffer, S.; Shepherd, L.V.T.; Stewart, D.; Davies, H.V.; Leifert, C.; Wilkockson, S.J.; Gruden, K.; Kok, E.J. The assessment of differences in the transcriptomes of organically and conventionally grown potato tubers. J. Agric. Food Chem. 2012, 60, 2090–2101.
[14]  Lehesranta, S.J.; Koistinen, K.M.; Massat, N.; Davies, H.V.; Shepherd, L.V.T.; McNicol, J.W.; Cakmak, I.; Cooper, J.; Luck, L.; Karenlampi, S.O.; Leifert, C. Effects of agricultural production systems and their components on protein profiles of potato tubers. Proteomics 2007, 7, 597–604, doi:10.1002/pmic.200600889.
[15]  M?der, P.; Fliessbach, A.; Dubois, D.; Gunst, L.; Fried, P.; Niggli, U. Soil fertility and biodiversity in organic farming. Science 2002, 296, 1694–1697.
[16]  Chang, E.H.; Chung, R.S.; Wang, F.N. Effect of different types of organic fertilizers on the chemical properties and enzymatic activities of an Oxisol under intensive cultivation of vegetables for 4 years. Soil Sci. Plant Nutr. 2008, 54, 587–599, doi:10.1111/j.1747-0765.2008.00264.x.
[17]  Ceylan, S.; Mordogan, N.; Akdemir, H.; Cakici, H. Effect of organic fertilizers on some agronomic and chemical properties of potato (Solanum tuberosum L.). Asian J. Chem. 2006, 18, 1223–1230.
[18]  Gunapala, N.; Scow, K.M. Dynamics of soil microbial biomass and activity in conventional and organic farming systems. Soil Biol. Biochem. 1998, 30, 805–816, doi:10.1016/S0038-0717(97)00162-4.
[19]  Shannon, D.; Sen, A.M.; Johnson, D.B. A comparative study of the microbiology of soils managed under organic and conventional regimes. Soil Use Manag. 2002, 18, 274–283, doi:10.1079/SUM2002130.
[20]  Rempelos, L.; Cooper, J.; Wilcockson, S.; Eyre, M.; Shotton, P.; Volakakis, N.; Orr, C.H.; Leifert, C.; Gatehouse, A.M.R.; Tétard-Jones, C. Quantitative proteomics to study the response of potato to contrasting fertilisation regimes. Mol. Breed. 2012. in press.
[21]  Tétard-Jones, C.; Shotton, P.N.; Rempelos, L.; Cooper, J.; Eyre, M.; Orr, C.H.; Leifert, C.; Gatehouse, A.M.R. Quantitative proteomics to study the response of wheat to contrasting fertilisation regimes. Mol. Breed. 2012. in press.
[22]  Varshney, R.K.; Graner, A.; Sorrells, M.E. Genomics-assisted breeding for crop improvement. Trends Plant Sci. 2005, 10, 621–630.
[23]  Hack, H.; Gall, H.; Klemke, T.H.; Klose, R.; Meier, U.; Stauss, R.; Witzen-Berger, A. Ph?nologische Entwicklungsstadien der Kartoffel (Solanum tuberosum L). Codirung und Beschreibung nach der erweiterten BBCH-Skala mit Abbildungen. Nachrichtenbl. Deut. Pflanzenschutzd. 1993, 45, 11–19.
[24]  Hurkman, W.J.; Tanaka, C.K. Solubilization of plant membrane proteins for analysis by two-dimensional gel electrophoresis. Plant Physiol. 1986, 81, 802–806, doi:10.1104/pp.81.3.802.
[25]  Healthcare, G.E. 2-D Electrophoresis Principles and Methods; General Electric Company: Uppsala, Sweden, 2010.
[26]  Pinheiro, J.C.; Bates, D.M. Mixed-Effects Models in S and S-PLUS; Springer: New York, NY, USA, 2000.
[27]  Crawley, M.J. The R Book; John Wiley and Son: Chichester, UK, 2007.
[28]  Team, R.D.C. R: A language and environment for statistical computing. R Foundation for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2009.
[29]  Ter Braak, C.J.F.; ?milauer, P. CANOCO Reference Manual and User’s Guide to Canoco for Windows: Software for Canonical Community Ordination, 4th ed.; Centre for Biometry: Wageningen, The Netherlands, 1998.
[30]  Chibani, K.; Ali-Rachedi, S.; Job, C.; Job, D.; Jullien, M.; Grappin, P. Proteomic analysis of seed dormancy in arabidopsis. Plant Physiol. 2006, 142, 1493–1510, doi:10.1104/pp.106.087452.
[31]  Lehesranta, S.J.; Davies, H.V.; Shepherd, L.V.T.; Koistinen, K.M.; Massat, N.; Nunan, N.; McNicol, J.W.; K?renlampi, S.O. Proteomic analysis of the potato tuber life cycle. Proteomics 2006, 6, 6042–6052.
[32]  Lehesranta, S.J.; Davies, H.V.; Shepherd, L.V.T.; Nunan, N.; McNicol, J.W.; Auriola, S.; Koistinen, K.M.; Suomalainen, S.; Kokko, H.I.; K?renlampi, S.O. Comparison of tuber proteomes of potato varieties, landraces, and genetically modified lines. Plant Physiol. 2005, 138, 1690–1699, doi:10.1104/pp.105.060152.
[33]  Van Dijk, J.P.; Cankar, K.; Scheffer, S.J.; Beenen, H.G.; Shepherd, L.V.T.; Stewart, D.; Davies, H.V.; Wilkockson, S.J.; Lelfert, C.; Gruden, K.; Kok, E.J. Transcriptome analysis of potato tubers-effects of different agricultural practices. J. Agric. Food Chem. 2009, 57, 1612–1623.
[34]  Olesinski, A.A.; Wolf, S.; Rudich, J.; Marani, A. The effect of nitrogen fertilization and irrigation frequency on photosynthesis of potatoes (Solarium tuberosum). Ann. Bot. 1989, 64, 651–657.
[35]  Griffiths, B.S.; Ritz, K.; Wheatley, R.E. Nematodes as indicators of enhanced microbiological activity in a Scottish organic farming system. Soil Use Manag. 1994, 10, 20–24, doi:10.1111/j.1475-2743.1994.tb00452.x.
[36]  Vos, J.; Groenwold, J. Water relations of potato leaves, I. Diurnal changes, gradients in the canopy, and effects of leaf-insertion number, cultivar and drought. Ann. Bot. 1988, 62, 363–371.
[37]  Songsri, P.; Jogloy, S.; Holbrook, C.C.; Kesmala, T.; Vorasoot, N.; Akkasaeng, C.; Patanothai, A. Association of root, specific leaf area and SPAD chlorophyll meter reading to water use efficiency of peanut under different available soil water. Agric. Water Manag. 2009, 96, 790–798, doi:10.1016/j.agwat.2008.10.009.
[38]  Barraclough, P.B.; Kyte, J. Effect of water stress on chlorophyll meter readings in winter wheat. In Plant Nutrition—Food Security and Sustainability of Agro-ecosystems; Horst, W.J., Schenk, M.K., Burkert, A., Claassen, N., Flessa, H., Frommer, W.B., Goldbach, H., Olfs, H.W., Romheld, V., Sattelmacher, B., Schmidhalter, U., Schubert, S., Wiren, N., Wittenmayer, L., Eds.; Springer: Dordrecht, The Netherlands, 2001; Volume 92, pp. 722–723. Developments in Plant and Soil Sciences.
[39]  Nawrocki, A.; Thorup-Kristensen, K.; Jensen, O.N. Quantitative proteomics by 2DE and MALDI MS/MS uncover the effects of organic and conventional cropping methods on vegetable products. J. Proteomics 2011, 74, 2810–2825, doi:10.1016/j.jprot.2011.06.021.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413