全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Agronomy  2013 

A Review of Biochar and Soil Nitrogen Dynamics

DOI: 10.3390/agronomy3020275

Keywords: biochar, immobilization, mineralization, nitrate leaching, nitrogen, nitrous oxide, ammonia volatilisation

Full-Text   Cite this paper   Add to My Lib

Abstract:

Interest in biochar stems from its potential agronomic benefits and carbon sequestration ability. Biochar application alters soil nitrogen (N) dynamics. This review establishes emerging trends and gaps in biochar-N research. Biochar adsorption of NO 3 ?, up to 0.6 mg g ?1 biochar, occurs at pyrolysis temperatures >600 °C with amounts adsorbed dependent on feedstock and NO 3 ? concentration. Biochar NH 4 + adsorption depends on feedstock, but no pyrolysis temperature trend is apparent. Long-term practical effectiveness of inorganic-N adsorption, as a NO 3 ? leaching mitigation option, requires further study. Biochar adsorption of ammonia (NH 3) decreases NH 3 and NO 3 ? losses during composting and after manure applications, and offers a mechanism for developing slow release fertilisers. Reductions in NH 3 loss vary with N source and biochar characteristics. Manure derived biochars have a role as N fertilizers. Increasing pyrolysis temperatures, during biochar manufacture from manures and biosolids, results in biochars with decreasing hydrolysable organic N and increasing aromatic and heterocyclic structures. The short- and long-term implications of biochar on N immobilisation and mineralization are specific to individual soil-biochar combinations and further systematic studies are required to predict agronomic and N cycling responses. Most nitrous oxide (N 2O) studies measuring nitrous oxide (N 2O) were short-term in nature and found emission reductions, but long-term studies are lacking, as is mechanistic understanding of reductions. Stable N isotopes have a role in elucidating biochar-N-soil dynamics. There remains a dearth of information regarding effects of biochar and soil biota on N cycling. Biochar has potential within agroecosystems to be an N input, and a mitigation agent for environmentally detrimental N losses. Future research needs to systematically understand biochar-N interactions over the long term.

References

[1]  Lehmann, J.; Joseph, S. Biochar for environmental management: An introduction. In Biochar for Environmental Management, Science and Technology; Lehmann, J., Joseph, S., Eds.; Earthscan: London, UK, 2009; pp. 1–12.
[2]  Woolf, D.; Amonette, J.E.; Stree-Perrott, F.A.; Lehmann, J.; Joseph, S. Sustainable biochar to mitigate global climate change. Nat. Commun. 2010, 1, 56.
[3]  Sohi, S.P.; Krull, E.; Lopez-Capel, E.; Bol, R. A review of biochar and its use and function in soil. Adv. Agron. 2010, 105, 47–82, doi:10.1016/S0065-2113(10)05002-9.
[4]  Spokas, K.A.; Cantrell, K.B.; Novak, J.M.; Archer, D.A.; Ippolito, J.A.; Collins, H.P.; Boateng, A.A.; Lima, I.M.; Lamb, M.C.; McAloon, A.J.; et al. Biochar: A synthesis of its agronomic impact beyond carbon sequestration. J. Environ. Qual. 2012, 41, 973–989, doi:10.2134/jeq2011.0069.
[5]  Clough, T.J.; Condron, L.M. Biochar and the nitrogen cycle. J. Environ. Qual. 2010, 39, 1218–1223, doi:10.2134/jeq2010.0204.
[6]  Galloway, J.N.; Townsend, A.R.; Erisman, J.W.; Bekunda, M.; Cai, Z.; Freney, J.R.; Martinelli, L.A.; Seitzinger, S.P.; Sutton, M.A. Transformation of the nitrogen cycle: Recent trends, questions, and potential solutions. Science 2008, 320, 889–892, doi:10.1126/science.1136674.
[7]  Galloway, J.; Aber, J.D.; Erisman, J.W.; Seitzinger, S.P.; Howarth, R.W.; Cowling, E.B.; Cosby, J. The nitrogen cascade. Biosci. Biotechnol. Biochem. 2003, 53, 341–356.
[8]  Singh, B.P.; Hatton, B.J.; Singh, B.; Cowie, A.L.; Kathuria, A. Influence of biochars on nitrous oxide emission and nitrogen leaching from two contrasting soils. J. Environ. Qual. 2010, 39, 1224–1235, doi:10.2134/jeq2009.0138.
[9]  Spokas, K.; Reicosky, D.C. Impacts of sixteen different biochars on soil greenhouse gas production. Ann. Environ. Sci. 2009, 3, 179–193.
[10]  Steiner, C.; Das, K.C.; Melear, N.; Lakly, D. Reducing nitrogen losses during poultry litter composting using biochar. J. Environ. Qual. 2010, 39, 1236–1242, doi:10.2134/jeq2009.0337.
[11]  Rondon, M.A.; Lehmann, J.; Ramírez, J.; Hurtado, M. Biological nitrogen fixation by common beans (Phaseolus vulgaris L.) increases with bio-char additions. Biol. Fertil. Soils 2007, 43, 699–708, doi:10.1007/s00374-006-0152-z.
[12]  Yao, Y.; Gao, B.; Zhang, M.; Inyang, M.; Zimmerman, A.R. Effect of biochar amendment on sorption and leaching of nitrate, ammonium, and phosphate in a sandy soil. Chemosphere 2012, 89, 1467–1471, doi:10.1016/j.chemosphere.2012.06.002.
[13]  Mizuta, K.; Matsumoto, T.; Hatate, Y.; Nishihara, K.; Nakanishi, T. Removal of nitrate-nitrogen from drinking water using bamboo powder charcoal. Bioresour. Technol. 2004, 95, 255–257, doi:10.1016/j.biortech.2004.02.015.
[14]  Kameyama, K.; Miyamoto, T.; Shiono, T.; Shinogi, Y. Influence of sugarcane bagasse-derived biochar application on nitrate leaching in calcaric dark red soil. J. Environ. Qual. 2012, 41, 1131–1137, doi:10.2134/jeq2010.0453.
[15]  Dempster, D.N.; Jones, D.L.; Murphy, D.M. Clay and biochar amendments decreased inorganic but not dissolved organic nitrogen leaching in soil. Soil Res. 2012, 50, 216–221, doi:10.1071/SR11316.
[16]  Kammann, C.; Linsel, S.; G??ling, J.; H-W, K. Influence of biochar on drought tolerance of Chenopodium quinoa willd and on soil-plant relations. Plant Soil 2011, 345, 195–210, doi:10.1007/s11104-011-0771-5.
[17]  Lehmann, J.; da Silva, J.P.; Steiner, C.; Nehls, T.; Zech, W.; Glaser, B. Nutrient availability and leaching in an archaeological anthrosol and a ferralsol of the central amazon basin: Fertilizer, manure and charcoal amendments. Plant Soil 2003, 249, 343–357, doi:10.1023/A:1022833116184.
[18]  Ventura, M.; Sorrentib, G.; Panzacchib, P.; Georgea, E.; Tonona, G. Biochar reduces short-term nitrate leaching from a horizon in an apple orchard. J. Environ. Qual. 2013, 42, 76–82, doi:10.2134/jeq2012.0250.
[19]  Ippolito, J.A.; Novak, J.M.; Busscher, W.J.; Ahmedna, M.; Rehrah, D.; Watts, D.W. Switchgrass biochar affects two aridisols. J. Environ. Qual. 2012, 41, 1123–1130, doi:10.2134/jeq2011.0100.
[20]  Schomberg, H.H.; Gaskin, J.W.; Harris, K.; Das, K.C.; Noval, J.M.; Busscher, W.J.; Watts, D.W.; Woodroof, R.H.; Lima, I.M.; Ahmedna, M.; et al. Influence of biochar on nitrogen fractions in a coastal plain soil. J. Environ. Qual. 2012, 41, 1087–1095, doi:10.2134/jeq2011.0133.
[21]  Ding, Y.; Liu, Y.X.; Wu, W.X.; Shi, D.Z.; Yang, M.; Zhong, Z.K. Evaluation of biochar effects on nitrogen retention and leaching in multi-layered soil columns. Water Air Soil Pollut. 2010, 213, 47–55, doi:10.1007/s11270-010-0366-4.
[22]  Lehmann, J. Bio-energy in the black. Front. Ecol. Environ. 2007, 5, 381–387, doi:10.1890/1540-9295(2007)5[381:BITB]2.0.CO;2.
[23]  Liang, B.; Lehmann, J.; Solomon, D.; Kinyangi, J.; Grossman, J.; O’Neill, B.; Skjemstad, J.O.; Thies, J.; Luiz?o, F.J.; Petersen, J.; et al. Black carbon increases cation exchange capacity in soils. Soil Sci. Soc. Am. J. 2006, 70, 1719–1730, doi:10.2136/sssaj2005.0383.
[24]  Cheng, C.H.; Lehmann, J.; Thies, J.E.; Burton, A.J.; Engelhard, M. Oxidation of black carbon by biotic and abiotic processes. Org. Geochem. 2006, 37, 1477–1488, doi:10.1016/j.orggeochem.2006.06.022.
[25]  Cheng, C.H.; Lehmann, J.; Thies, J.E.; Burton, S.D. Stability of black carbon in soils across a climatic gradient. J. Geophys. Res. 2008, doi:10.1029/2007JG000642.
[26]  Jones, D.L.; Rousk, J.; Edwards-Jones, G.; DeLuca, T.H.; Murphy, D.V. Biochar-mediated changes in soil quality and plant growth in a three year field trial. Soil Biol. Biochem. 2012, 45, 113–124, doi:10.1016/j.soilbio.2011.10.012.
[27]  Schulz, H.; Glaser, B. Effects of biochar compared to organic and inorganic fertilizers on soil quality and plant growth in a greenhouse experiment. J. Plant Nutr. Soil Sci. 2012, 175, 410–422, doi:10.1002/jpln.201100143.
[28]  Saleh, M.E.; Mahmoud, A.H.; Rashad, M. Peanut biochar as a stable adsorbent for removing NH4-N from wastewater: A preliminary study. Adv. Environ. Biol. 2012, 6, 2170–2176.
[29]  Sp?th, A.; K?nig, B. Molecular recognition of organic ammonium ions in solution using synthetic receptors. Beilstein J. Org. Chem. 2010, 6, 1–111.
[30]  Downie, A.; Crosky, A.; Munroe, P. Physical properties of biochar. In Biochar for Environmental Management. Science and Technology; Lehmann, J., Joseph, S., Eds.; Earthscan: London, UK, 2009; pp. 13–32.
[31]  Prost, K.; Borchard, N.; Siemens, J.; KAutz, T.; Séquaris, J.-M.; M?ller, A.; Amelung, W. Biochar affected by composting with farmyard manure. J. Environ. Qual. 2013, 42, 164–172, doi:10.2134/jeq2012.0064.
[32]  Murphy, D.V.; Macdonald, A.J.; Stockdale, E.A.; Goulding, K.W.T.; Fortune, S.; Gaunt, J.L.; Poulton, P.R.; Wakefield, J.A.; Webster, C.P.; Wilmer, W.S. Soluble organic nitrogen in agricultural soils. Biol. Fertil. Soils 2000, 30, 374–387, doi:10.1007/s003740050018.
[33]  Van Kessel, C.; Clough, T.J.; Van Groenigen, J.W. Dissolved organic nitrogen: An overlooked pathway of nitrogen loss from agricultural systems? J. Environ. Qual. 2009, 38, 393–401, doi:10.2134/jeq2008.0277.
[34]  Dempster, D.N.; Gleeson, D.B.; Solaiman, Z.M.; Jones, D.L.; Murphy, D.V. Decreased soil microbial biomass and nitrogen mineralisation with eucalyptus biochar addition to a coarse textured soil. Plant Soil. 2012, 354, 311–324, doi:10.1007/s11104-011-1067-5.
[35]  Van Zwieten, L.; Kimber, S.; Morris, S.; Chan, K.Y.; Downie, A.; Rust, J.; Joseph, S.; Cowie, A. Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant Soil. 2010, 327, 235–246, doi:10.1007/s11104-009-0050-x.
[36]  Prendergast-Miller, M.T.; Duvall, M.; Sohi, S.P. Localisation of nitrate in the rhizosphere of biochar-amended soils. Soil Biol. Biochem. 2011, 43, 2243–2246, doi:10.1016/j.soilbio.2011.07.019.
[37]  O’Toole, A.; Knoth de Zarruk, K.; Steffens, M.; Rasse, D.P. Characterization, stability, and plant effects of kiln-produced wheat straw biochar. J. Environ. Qual. 2012, doi:10.2134/jeq2012.0163.
[38]  Unger, R.; Killorn, R. Effect of the application of biochar on selected soil chemical properties, corn grain, and biomass yields in Iowa. Commun. Soil Sci. Plant Anal. 2012, 42, 2441–2451, doi:10.1080/00103624.2011.609253.
[39]  Lentz, R.D.; Ippolito, J.A. Biochar and manure affect calcareous soil and corn silage nutrient concentrations and uptake. J. Environ. Qual. 2012, 41, 1033–1043, doi:10.2134/jeq2011.0126.
[40]  Zhang, A.; Liu, Y.; Pan, G.; Hussain, Q.; Li, L.; Zheng, J.; Zhang, X. Effect of biochar amendment on maize yield and greenhouse gas emissions from a soil organic carbon poor calcareous loamy soil from central china plain. Plant Soil 2012, 351, 263–275, doi:10.1007/s11104-011-0957-x.
[41]  Uzoma, K.C.; Inoue, M.; Andry, H.; Fujimaki, H.; Zahoor, A.; Nishihara, E. Effect of cow manure biochar on maize productivity under sandy soil condition. Soil Use Manag. 2011, 27, 205–212, doi:10.1111/j.1475-2743.2011.00340.x.
[42]  Wang, T.; Camps Arbestain, M.; Hedley, M.; Bishop, P. Chemical and bioassay characterisation of nitrogen availability in biochar produced from dairy manure and biosolids. Org. Geochem. 2012, 51, 45–54.
[43]  Almendrosa, G.; Knicker, H.; González-Vilac, F.J. Rearrangement of carbon and nitrogen forms in peat after progressive thermal oxidation as determined by solid-state 13C- and 15N-NMR spectroscopy. Org. Geochem. 2003, 34, 1559–1568, doi:10.1016/S0146-6380(03)00152-9.
[44]  Schimel, J.P.; Bennett, J. Nitrogen mineralization: Challenges of a changing paradigm. Ecology 2004, 85, 591–602, doi:10.1890/03-8002.
[45]  Noguera, D.; Barot, S.; Laossi, K.-R.; Cardosso, J.; Lavelle, P.; de Carvalho, M.H.C. Biochar but not earthworms enhances rice growth through increased protein turnover. Soil Biol. Biochem. 2012, 52, 13–20, doi:10.1016/j.soilbio.2012.04.004.
[46]  De la Rosa, J.M.; Knicker, H. Bioavailability of n released from N-rich pyrogenic organic matter: An incubation study. Soil Biol. Biochem. 2011, 43, 2368–2373, doi:10.1016/j.soilbio.2011.08.008.
[47]  Schouten, S.; Van Groenigen, J.W.; Oenema, O.; Cayuela, M.L. Bioenergy from cattle manure? Implications of anaerobic digestion and subsequent pyrolysis for carbon and nitrogen dynamics in soil. Glob. Change Biol. Bioenergy 2012, 4, 751–760.
[48]  Rondon, M.; Ramirez, J.A.; Lehmann, J. Charcoal Additions Reduce Net Emissions of Greenhouse Gases to the Atmosphere, Proceedings of the 3rd Symposium on Greenhouse Gases and Carbon Sequestration, Baltimore, MD, USA, 21–24 March 2005; p. 208.
[49]  Taghizadeh-Toosi, A.; Clough, T.J.; Condron, L.M.; Sherlock, R.R.; Anderson, C.R.; Craigie, R.A. Biochar incorporation into pasture soil suppresses in situ N2O emissions from ruminant urine patches. J. Environ. Qual. 2011, 40, 468–476.
[50]  Castaldi, S.; Riondino, M.; Baronti, S.; Esposito, F.R.; Marzaioli, R.; Rutigliano, F.A. Impact of biochar application to a mediterranean wheat crop on soil microbial activity and greenhouse gas fluxes. Chemosphere 2012, 85, 1464–1471.
[51]  Aguilar-Chavez, A.; Diaz-Rojas, M.; Cardenas-Aquino, M.R.; Dendooven, L.; Luna-Guido, M. Greenhouse gas emissions from a wastewater sludge-amended soil cultivated with wheat (Triticum spp. L.) as affected by different application rates of charcoal. Soil Biol. Biochem. 2012, 52, 90–95, doi:10.1016/j.soilbio.2012.04.022.
[52]  Augustenborg, C.A.; Hepp, S.; Kamman, C.; Hagan, D.; Schmidt, O.; Muller, C. Biochar and earthworm effects on soil nitrous oxide and carbon dioxide emissions. J. Environ. Qual. 2012, 41, 1203–1209, doi:10.2134/jeq2011.0119.
[53]  Case, S.D.C.; McNamara, N.P.; Reay, D.S.; Whitaker, J. The effect of biochar addition on N2O and CO2 emissions from a sandy loam soil—The role of soil aeration. Soil Biol. Biochem. 2012, 51, 125–134, doi:10.1016/j.soilbio.2012.03.017.
[54]  Kammann, C.; Ratering, S.; Eckhard, C.; Muller, C. Biochar and hydrochar effects on greenhouse gas (carbon dioxide, nitrous oxide, and methane) fluxes from soils. J. Environ. Qual. 2012, 41, 1052–1066, doi:10.2134/jeq2011.0132.
[55]  Lho, C.F.B.V.; Cardoso, A.D.; Alves, B.J.R.; Novotny, E.H. Biochar and soil nitrous oxide emissions. Pesquisa Agropecuaria Brasileira 2012, 47, 722–725, doi:10.1590/S0100-204X2012000500013.
[56]  Saarnio, S.; Heimonen, K.; Kettunen, R. Biochar addition indirectly affects N2O emissions via soil moisture and plant n uptake. Soil Biol. Biochem. 2012, 58, 99–106, doi:10.1016/j.soilbio.2012.10.035.
[57]  Spokas, K.A.; Koskinen, W.C.; Baker, J.M.; Reicosky, D.C. Impacts of woodchip biochar additions on greenhouse gas production and sorption/degradation of two herbicides in a minnesota soil. Chemosphere 2009, 77, 574–581, doi:10.1016/j.chemosphere.2009.06.053.
[58]  Van Zwieten, L.; Kimber, S.; Morris, S.; Downie, A.; Berger, E.; Rust, J.; Scheer, C. Influence of biochars on flux of N2O and CO2 from ferrosol. Aust. J. Soil Res. 2010, 48, 555–568.
[59]  Wang, J.; Zhang, M.; xiong, Z.Q.; Liu, P.R.; Pan, G. Effects of biochar addition on N2O and CO2 emissions from two paddy soils. Biol. Fertil. Soils 2011, 47, 887–896, doi:10.1007/s00374-011-0595-8.
[60]  Yanai, Y.; Toyota, K.; Okazaki, M. Effects of charcoal addition on N2O emissions from soil resulting from rewetting air-dried soil in short-term laboratory experiments. Soil Sci. Plant Nutr. 2007, 53, 181–188, doi:10.1111/j.1747-0765.2007.00123.x.
[61]  Yoo, G.; Kang, H.J. Effects of biochar addition on greenhouse gas emissions and microbial responses in a short-term laboratory experiment. J. Environ. Qual. 2012, 41, 1193–1202, doi:10.2134/jeq2011.0157.
[62]  Clough, T.J.; Bertram, J.E.; Ray, J.L.; Condron, L.M.; O’Callaghan, M.; Sherlock, R.R.; Wells, S. Unweathered wood biochar impact on nitrous oxide emissions from a bovine-urine-amended pasture soil. Soil Sci. Soc. Am. J. 2010, 74, 852–860, doi:10.2136/sssaj2009.0185.
[63]  Scheer, C.; Grace, P.R.; Rowlings, D.W.; Kimber, S.; Van Zwieten, L. Effect of biochar amendment on the soil-atmosphere exchange of greenhouse gases from an intensive subtropical pasture in northern new south wales, australia. Plant Soil 2011, 345, 47–58, doi:10.1007/s11104-011-0759-1.
[64]  Spokas, K.A.; Baker, J.M.; Reicosky, D.C. Ethylene: Potential key for biochar amendment impacts. Plant Soil. 2010, 333, 443–452, doi:10.1007/s11104-010-0359-5.
[65]  Taghizadeh-Toosi, A.; Clough, T.J.; Sherlock, R.R.; Condron, L.M. Biochar adsorbed ammonia is bioavailable. Plant Soil 2012, 350, 57–69, doi:10.1007/s11104-011-0870-3.
[66]  Taghizadeh-Toosi, A.; Clough, T.J.; Sherlock, R.R.; Condron, L.M. A wood based low-temperature biochar captures NH3-N generated from ruminant urine-N, retaining its bioavailability. Plant Soil. 2012, doi:10.1007/s11104-11011-11010-11109.
[67]  Nelissen, V.; Rütting, T.; Huygen, D.; Staelens, J.; Ruysschaerta, G.; Boeckx, P. Maize biochars accelerate short-term soil nitrogen dynamics in a loamy sand soil. Soil Biol. Biochem. 2012, 55, 20–27, doi:10.1016/j.soilbio.2012.05.019.
[68]  Liu, X.Y.; Qu, J.J.; Li, L.Q.; Zhang, A.F.; Zheng, J.F.; Zheng, J.W.; Pan, G.X. Can biochar amendment be an ecological engineering technology to depress N2O emission in rice paddies?—A cross site field experiment from south china. Ecol. Eng. 2012, 42, 167–173.
[69]  Knoblauch, C.; Maarifat, A.A.; Pfeiffer, E.M.; Haefele, S.M. Degradability of black carbon and its impact on trace gas fluxes and carbon turnover in paddy soils. Soil Biol. Biochem. 2012, 43, 1768–1778.
[70]  Streubel, J.D.; Collins, H.P.; Garcia-Perez, M.; Tarara, J.; Granatstein, D.; Kruger, C.E. Influence of contrasting biochar types on five soils at increasing rates of application. 2011, 75, 1402–1413.
[71]  Cheng, Y.; Cai, Z.C.; Chang, S.X.; Wang, J.; Zhang, J.B. Wheat straw and its biochar have contrasting effects on inorganic N retention and N2O production in a cultivated black chernozem. Biol. Fertil. Soils 2012, 48, 941–946.
[72]  Bruun, E.S.; Ambus, P.; Egsgaard, H.; Huggaard-Nielsen, H. Effects of slow and fast pyrolysis biochar on soil c and n dynamics. Soil Biol. Biochem. 2012, 46, 73–79, doi:10.1016/j.soilbio.2011.11.019.
[73]  Knicker, H.; Skjemstad, J.O. Nature of organic carbon and nitrogen in physically protected organic matter of some australian soils as revealed by solid-state 13C and 15N nmr spectroscopy. Aust. J. Agric. Res. 2000, 23, 329–341.
[74]  Smith, J.L.; Collins, H.P.; Bailey, V.L. The effect of young biochar on soil respiration. Soil Biol. Biochem. 2010, 42, 2345–2347, doi:10.1016/j.soilbio.2010.09.013.
[75]  Anderson, C.R.; Condron, L.M.; Clough, T.J.; Fiers, M.; Stewart, A.; Hill, R.A.; Sherlock, R.R. Biochar induced soil microbial community change: Implications for biogeochemical cycling of carbon, nitrogen and phosphorus. Pedobiologia 2011, 54, 309–320, doi:10.1016/j.pedobi.2011.07.005.
[76]  Zimmerman, A.R.; Gao, B.; Ahn, M. Poistive and negative carbon mineralization priming effects among a variety of biochar-amended soils. Soil Biol. Biochem. 2011, 43, 1169–1179, doi:10.1016/j.soilbio.2011.02.005.
[77]  Luo, Y.; Durenkamp, M.; De Nobili, M.; Lin, Q.; Brookes, P.C. Short term soil priming effects and the mineralisation of biochar following its incorporation to soils at different ph. Soil Biol. Biochem. 2011, 43, 2304–2314, doi:10.1016/j.soilbio.2011.07.020.
[78]  Woolf, D.; Lehmann, J. Modelling the long-term response to positive and negative priming of soil organic carbon by black carbon. Biogeochemistry 2012, 111, 83–95, doi:10.1007/s10533-012-9764-6.
[79]  Ball, P.N.; MacKenzie, M.D.; DeLuca, T.H.; Holben, W.E. Wildfire and charcoal enhance nitrification and ammonium-oxidizing bacterial abundance in dry montane forest soils. J. Environ. Qual. 2010, 39, 1243–1253, doi:10.2134/jeq2009.0082.
[80]  DeLuca, T.H.; MacKenzie, M.D.; Gundale, M.J.; Holben, W.E. Wildfire-produced charcoal directly influences nitrogen cycling in ponderosa pine forests. Soil Sci. Soc. Am. J. 2006, 70, 448–453, doi:10.2136/sssaj2005.0096.
[81]  Lehmann, J.; Rillig, M.C.; Thies, J.; Masiello, C.A.; Hockaday, W.C.; Crowley, D. Biochar effects on soil biota—A review. Soil Biol. Biochem. 2011, 43, 1812–1836, doi:10.1016/j.soilbio.2011.04.022.
[82]  Biederman, L.A.; Harpole, W.S. Biochar and its effects on plant productivity and nutrient cycling: A meta-analysis. Glob. Change Biol. Bioenergy 2013, 5, 202–214, doi:10.1111/gcbb.12037.
[83]  Noguera, D.; Rondon, M.; Laossi, K.-R.; Hoyos, V.; Lavelle, P.; de Carvalho, M.H.C.; Barot, S. Contrasted effect of biochar and earthworms on rice growth and resource allocation in different soils. Soil Biol. Biochem. 2010, 42, 1017–1027, doi:10.1016/j.soilbio.2010.03.001.
[84]  Sarkhot, D.V.; Berhe, A.A.; Ghezzehei, T.A. Impact of biochar enriched with dairy manure effluent on carbon and nitrogen dynamics. J. Environ. Qual. 2012, 41, 1107–1114, doi:10.2134/jeq2011.0123.
[85]  Spokas, K.A.; Novak, J.M.; Venterea, R.T. Biochar’s role as an alternative N-fertilizer: Ammonia capture. Plant Soil 2012, 350, 35–42, doi:10.1007/s11104-011-0930-8.
[86]  Holmes, J.M.; Beebe, R.A. An example of desorption hysteresis at low relative pressures on a non-porous adsorbent: Ammonia on graphitized carbon black. J. Phys. Chem. 1957, 61, 1684–1686, doi:10.1021/j150558a040.
[87]  Jansen, R.J.J.; van Bekkum, H. Amination and ammoxidation of activated carbons. Carbon 1994, 38, 1507–1516, doi:10.1016/0008-6223(94)90146-5.
[88]  Seredych, M.; Bandosz, T.J. Mechanism of ammonia retention on graphite oxides: Role of surface chemistry and structure. J. Phys. Chem. C 2007, 111, 15596–15604, doi:10.1021/jp0735785.
[89]  Petit, C.; Kante, K.; Bandosz, T.J. The role of sulfur-containing groups in ammonia retention on activated carbons. Carbon 2010, 48, 654–667, doi:10.1016/j.carbon.2009.10.007.
[90]  Doydora, S.A.; Cabrera, M.L.; Das, K.C.; Gaskin, J.W.; Sonon, L.S.; Miller, W.P. Release of nitrogen and phosphorus from poultry litter amended with acidified biochar. Int. J. Environ. Res. Public Health 2011, 8, 1491–1502, doi:10.3390/ijerph8051491.
[91]  Hua, L.; Wu, W.; Liu, Y.; Mcbride, M.; Chen, Y. Reduction of nitrogen loss and Cu and Zn mobility during sludge composting with bamboo charcoal amendment. Environ. Sci. Pollut. Res. 2009, 16, 1–9.
[92]  Chen, Y.X.; Huang, X.D.; Z.Y., H.; Huang, X.; Hu, B.; Shi, D.Z.; Wu, W.X. Effects of bamboo charcoal and bamboo vinegar on nitrogen conservation and heavy metals immobility during pig manure composting. Chemosphere 2010, 78, 1177–1181, doi:10.1016/j.chemosphere.2009.12.029.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413