全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Agronomy  2013 

Integrated Palmer Amaranth Management in Glufosinate-Resistant Cotton: II. Primary, Secondary and Conservation Tillage

DOI: 10.3390/agronomy3010028

Keywords: cover crops, glufosinate-tolerant cotton, soil inversion, spring tillage methods, specifically

Full-Text   Cite this paper   Add to My Lib

Abstract:

A three year field experiment was conducted to evaluate the role of soil inversion, cover crops and spring tillage methods for Palmer amaranth between-row (BR) and within-row (WR) management in glufosinate-resistant cotton. Main plots were two soil inversion treatments: fall inversion tillage (IT) and non-inversion tillage (NIT). Subplots were three cover treatments: crimson clover, cereal rye or none ( i.e., winter fallow); and the sub subplots were four secondary spring tillage methods: disking followed by (fb) cultivator (DCU), disking fb chisel plow (DCH), disking fb disking (DD) and no tillage (NT). Averaged over years and soil inversion, the crimson clover produced maximum cover biomass (4390 kg ha ?1) fb cereal rye (3698 kg ha ?1) and winter fallow (777 kg ha ?1). Two weeks after planting (WAP) and before the postemergence (POST) application, Palmer amaranth WR and BR density were two- and four-times less, respectively, in IT than NIT. Further, Palmer amaranth WR and BR density were reduced two-fold following crimson clover and cereal rye than following winter fallow at 2 WAP. Without IT, early season Palmer amaranth densities were 40% less following DCU, DCH and DD, when compared with IT. Following IT, no spring tillage method improved Palmer amaranth control. The timely application of glufosinate + S-metolachlor POST tank mixture greatly improved Palmer amaranth control in both IT and NIT systems. The highest cotton yields were obtained with DD following cereal rye (2251 kg ha ?1), DD following crimson clover (2213 kg ha ?1) and DD following winter fallow (2153 kg ha ?1). On average, IT cotton yields (2133 kg ha ?1) were 21% higher than NIT (1766 kg ha ?1). Therefore, from an integrated weed management standpoint, an occasional fall IT could greatly reduce Palmer amaranth emergence on farms highly infested with glyphosate-resistant Palmer amaranth. In addition, a cereal rye or crimson clover cover crop can effectively reduce early season Palmer amaranth emergence in both IT and NIT systems. For effective and season-long control of Palmer amaranth, one or more POST applications of glufosinate + residual herbicide as tank mixture may be needed in a glufosinate-based cotton production system.

References

[1]  Horak, M.J.; Loughin, T.M. Growth analysis of four Amaranthus species. Weed Sci. 2000, 48, 347–355, doi:10.1614/0043-1745(2000)048[0347:GAOFAS]2.0.CO;2.
[2]  Keeley, P.E.; Carter, C.H.; Thullen, R.M. Influence of planting date on growth of Palmer amaranth (Amaranthus palmeri). Weed Sci. 1987, 35, 199–204.
[3]  Steckel, L.E.; Sprague, C.L.; Stoller, E.W.; Wax, L.M. Temperature effects on germination of nine Amaranthus species. Weed Sci. 2004, 52, 217–221, doi:10.1614/WS-03-012R.
[4]  Ehleringer, J. Ecophysiology of Amaranthus palmeri, a Sonoran Desert summer annual. Oecologia 1983, 57, 107–112, doi:10.1007/BF00379568.
[5]  Jha, P.; Norsworthy, J.K.; Malik, M.S.; Bangarwa, S.K.; Oliveira, M.J. Temporal emergence of Palmer amaranth from a natural seedbank. Proc. South. Weed Sci. Soc. 2006, 59, 177.
[6]  Place, G.; Bowman, D.; Burton, M.; Rufty, T. Root penetration through a high bulk density soil layer: Differential response of a crop and weed species. Plant Soil 2008, 307, 179–190, doi:10.1007/s11104-008-9594-4.
[7]  Wright, S.R.; Jennette, M.W.; Coble, H.D.; Rufty, T.W. Root morphology of young Glycine max, Senna obtusifolia and Amaranthus palmeri. Weed Sci. 1999, 47, 706–711.
[8]  Jha, P.; Norsworthy, J.K.; Riley, M.B.; Bielenberg, D.G.; Bridges, W., Jr. Acclimation of Palmer amaranth (Amaranthus palmeri) to shading. Weed Sci. 2008, 56, 729–734, doi:10.1614/WS-07-203.1.
[9]  Bensch, C.N.; Horak, M.J.; Peterson, D. Interference of redroot pigweed (Amaranthus retroflexus), Palmer amaranth (A. palmeri) and common waterhemp (A. rudis) in soybean. Weed Sci. 2003, 51, 37–43.
[10]  Burke, I.C.; Schroeder, M.; Thomas, W.E.; Wilcut, J.W. Palmer amaranth interference and seed production in peanut. Weed Technol. 2007, 21, 367–371, doi:10.1614/WT-06-058.1.
[11]  Klingaman, T.E.; Oliver, L.R. Palmer amaranth (Amaranthus palmeri) interference in soybeans (Glycine max). Weed Sci. 1994, 42, 523–527.
[12]  Massinga, R.A.; Currie, R.S.; Horak, M.J.; Boyer, J. Interference of Palmer amaranth in corn. Weed Sci. 2001, 49, 202–208, doi:10.1614/0043-1745(2001)049[0202:IOPAIC]2.0.CO;2.
[13]  Menges, R.M. Allelopathic effects of Palmer amaranth (Amaranthus palmeri) and other plant residues in soil. Weed Sci. 1987, 35, 339–347.
[14]  Menges, R.M. Allelopathic effects of Palmer amaranth (Amaranthus palmeri) on seedling growth. Weed Sci. 1988, 36, 325–328.
[15]  Meyers, S.L.; Jennings, K.M.; Schultheis, J.R.; Monks, D.W. Evaluation of flumioxazin and S-metolachlor rate and timing for Palmer Amaranth (Amaranthus palmeri) control in sweetpotato. Weed Technol. 2010, 24, 495–503.
[16]  Monks, D.M.; Oliver, L.R. Interactions between soybean (Glycine max) cultivars and selected weeds. Weed Sci. 1988, 36, 770–774.
[17]  Moore, J.W.; Murray, D.S.; Westerman, R.B. Palmer amaranth (Amaranthus palmeri) effects on the harvest and yield if grain sorghum (Sorghum bicolor). Weed Technol. 2004, 18, 23–29, doi:10.1614/WT-02-086.
[18]  Morgan, G.D.; Baumann, P.A.; Chandler, J.M. Competitive impact of Palmer amaranth (Amaranthus palmeri) on cotton (Gossypium hirsutum) development and yield. Weed Technol. 2001, 15, 408–412, doi:10.1614/0890-037X(2001)015[0408:CIOPAA]2.0.CO;2.
[19]  Norsworthy, J.K.; Smith, K.L.; Scott, R.C.; Gbur, E.E. Consultant perspectives on weed management needs in Arkansas cotton. Weed Technol. 2007, 21, 825–831.
[20]  Norsworthy, J.K.; Griffith, G.M.; Scott, R.C.; Smith, K.L.; Oliver, L.R. Confirmation and control of glyphosate-resistant Palmer amaranth (Amaranthus palmeri) in Arkansas. Weed Technol. 2008, 21, 108–113.
[21]  Rowland, M.W.; Murry, D.S.; Verhalen, L.M. Full-season Palmer amaranth (Amaranthus palmeri) interference with cotton (Gossypium hirsutum). Weed Sci. 1999, 47, 305–309.
[22]  Smith, D.T.; Baker, R.V.; Steele, G.L. Palmer amaranth (Amaranthus palmeri) impacts on yield, harvesting and ginning in dryland cotton (Gossypium hirsutum). Weed Technol. 2000, 14, 122–126, doi:10.1614/0890-037X(2000)014[0122:PAAPIO]2.0.CO;2.
[23]  Webster, T.M. Weed survey—Southern states. Proc. South. Weed Sci. Soc. 2005, 58, 291–306.
[24]  Culpepper, A.S.; Grey, T.L.; Vencill, W.K.; Kichler, J.M.; Webster, T.M.; Brown, S.M.; York, A.C.; Davis, J.W.; Hanna, W.W. Glyphosate-resistant Palmer amaranth (Amaranthus palmeri) confirmed in Georgia. Weed Sci. 2006, 54, 620–626, doi:10.1614/WS-06-001R.1.
[25]  Culpepper, A.S.; Whitaker, J.R.; MacRae, A.W.; York, A.C. Distribution of glyphosate-resistant Palmer amaranth (Amaranthus palmeri) in Georgia and North Carolina during 2005 and 2006. J. Cotton Sci. 2008, 12, 306–310.
[26]  Heap, I. The international survey of herbicide resistant weeds, 2012. Available online: www.weedscience.org (accessed on 11 March 2012).
[27]  Gosset, B.J.; Murdock, E.C.; Toler, J.E. Resistance of Palmer amaranth (Amaranthus palmeri) to the dinitroaniline herbicides. Weed Technol. 1992, 6, 587–591.
[28]  Ball, D.A. Weed seedbank response to tillage, herbicides and crop rotation sequence. Weed Sci. 1992, 40, 654–659.
[29]  Barberi, P.; Cozzani, A.; Macchia, M.; Bonari, E. Size and composition of the weed seedbank under different management systems for continuous maize cropping. Weed Res. 1998, 38, 319–334, doi:10.1046/j.1365-3180.1998.00098.x.
[30]  Cardina, J.; Regnier, E.; Harrison, K. Long-term tillage effects on seedbanks in three Ohio soils. Weed Sci. 1991, 39, 186–194.
[31]  Dyer, W. Exploiting weed seed dormancy and germination requirements through agronomic practices. Weed Sci. 1995, 43, 498–503.
[32]  Mulugeta, D.; Stoltenberg, D.E. Weed and seedbank management with integrated methods as influenced by tillage. Weed Sci. 1997, 45, 706–715.
[33]  Triplett, G.B., Jr.; Lytle, G.D. Control and ecology of weeds in continuous corn without tillage. Weed Sci. 1972, 20, 453–457.
[34]  Webster, T.M.; Cardina, J.; Norquay, H.M. Tillage and seed depth effects on velvetleaf (Abutilon theophrasti) emergence. Weed Sci. 1998, 46, 76–82.
[35]  Wicks, G.A.; Burnside, O.C.; Felton, W.L. Weed control in conservation tillage systems. In Managing Agricultural Residues; Unger, P.W., Ed.; Lewis Publishers: Boca Raton, FL, USA, 1994; pp. 211–244.
[36]  Yenish, J.P.; Doll, J.D.; Buhler, D.D. Effects of tillage on vertical distribution and viability of weed seed in soil. Weed Sci. 1992, 40, 429–433.
[37]  Benech-Arnold, R.L.; Sanchez, R.A.; Forcella, F.; Kruk, B.C.; Ghersa, C.M. Environmental control of dormancy in weed seed banks in soil. Field Crops Res. 2000, 67, 105–122, doi:10.1016/S0378-4290(00)00087-3.
[38]  Bond, W.; Grundy, A.C. Non-chemical weed management in organic farming systems. Weed Res. 2001, 41, 383–405, doi:10.1046/j.1365-3180.2001.00246.x.
[39]  Buhler, D.D.; Kohler, K.A.; Thompson, R.L. Weed seed bank dynamics during five-year crop rotation. Weed Technol. 2001, 15, 170–176, doi:10.1614/0890-037X(2001)015[0170:WSBDDA]2.0.CO;2.
[40]  Cardina, J.; Herms, C.P.; Doohan, D.J. Crop rotation and tillage system effects on weed seedbanks. Weed Sci. 2002, 50, 448–460, doi:10.1614/0043-1745(2002)050[0448:CRATSE]2.0.CO;2.
[41]  Clements, D.R.; Benoit, D.L.; Swanton, C.J. Tillage effects on weed seed return and seedbank composition. Weed Sci. 1996, 44, 314–322.
[42]  Staricka, J.A.; Burford, P.M.; Allmaras, R.R.; Nelson, W.W. Tracing the vertical distribution of simulated shattered seeds as related to tillage. Agron. J. 1990, 82, 1131–1134, doi:10.2134/agronj1990.00021962008200060022x.
[43]  Ateh, C.M.; Doll, J. Spring-planted winter rye as a living mulch to control weeds in soybean. Weed Technol. 1996, 10, 347–353.
[44]  Barnes, J.P.; Putnam, A.R. Evidence for allelopathy by residues and aqueous extracts of rye (Secale cereale L.). Weed Sci. 1986, 34, 384–390.
[45]  Barnes, J.P.; Putnam, A.R.; Burke, B.A.; Aasen, A.J. Isolation and characterization of allelochemicals in rye herbage. Phytochemistry 1987, 26, 1385–1390.
[46]  Burgos, N.R.; Talbert, R.E. Differential activity of allelochemicals from Secale cereale in seedling bioassays. Weed Sci. 2000, 48, 302–310, doi:10.1614/0043-1745(2000)048[0302:DAOAFS]2.0.CO;2.
[47]  Collins, H.P.; Delgado, J.A.; Alva, A.K.; Follett, R.F. Use of nitrogen-15 isotopic techniques to estimate nitrogen cycling from a mustard cover crop to potatoes. Agron. J. 2007, 99, 27–35, doi:10.2134/agronj2005.0357.
[48]  Dhima, K.V.; Vasilakoglou, I.B.; Eleftherohorinos, I.G.; Lithourgidis, A.S. Allelopathic potential of winter cereals and their cover crop mulch effect on grass weed suppression and corn development. Crop Sci. 2006, 46, 345–352, doi:10.2135/cropsci2005-0186.
[49]  Reddy, K.N. Effects of cereal and legume cover crop residues on weeds, yield and net return in soybean (Glycine max). Weed Technol. 2001, 15, 660–668, doi:10.1614/0890-037X(2001)015[0660:EOCALC]2.0.CO;2.
[50]  Teasdale, J.R. Contribution of cover crops to weed management in sustainable agricultural systems. J. Prod. Agric. 1996, 9, 475–479.
[51]  Teasdale, J.R.; Beste, C.E.; Potts, W.E. Response of weeds to tillage and cover crop residue. Weed Sci. 1991, 39, 195–199.
[52]  Teasdale, J.R.; Mohler, C.L. The quantitative relationship between weed emergence and the physical properties of mulches. Weed Sci. 2000, 48, 385–392, doi:10.1614/0043-1745(2000)048[0385:TQRBWE]2.0.CO;2.
[53]  Yenish, J.P.; Worsham, A.D.; York, A.C. Cover crops for herbicide replacement in no-tillage corn (Zea mays). Weed Technol. 1996, 10, 815–821.
[54]  White, R.H.; Worsham, A.D.; Blum, U. Allelopathic potential of legume debris. Weed Sci. 1989, 37, 674–679.
[55]  Price, A.J.; Reeves, D.W.; Patterson, M.G. Evaluation of weed control provided by three winter cereals in conservation-tillage soybean. Ren. Agric. Food Sys. 2006, 21, 159–164, doi:10.1079/RAF2005135.
[56]  Price, A.J.; Reeves, D.W.; Patterson, M.G.; Gamble, B.E.; Balkcom, K.S.; Arriaga, F.J.; Monks, C.D. Weed control in peanut grown in a high-residue conservation-tillage system. Peanut Sci. 2007, 34, 59–64, doi:10.3146/0095-3679(2007)34[59:WCIPGI]2.0.CO;2.
[57]  Teasdale, J.R.; Daughtry, C.S.T. Weed suppression by live and desiccated hairy vetch (Vicia villosa). Weed Sci. 1993, 41, 207–212.
[58]  Weston, L. Cover crop and herbicide influence on row crop seedling establishment in no-tillage culture. Weed Sci. 1990, 38, 166–171.
[59]  Price, A.J.; Balkcom, K.S.; Arriaga, F.J. Rye biomass amount affects weed suppression levels in conversation-tillage cotton. In Proceedings of the Beltwide Cotton Conference, New Orleans, LA, USA, 4–7 January 2005; pp. 2921–2923.
[60]  Price, A.J.; Arriaga, F.J.; Raper, R.L.; Balkcom, K.S.; Kornecki, T.S.; Reeves, D.W. Comparison of mechanical and chemical winter cereal cover crop termination systems and cotton yield in conservation agriculture. J. Cotton Sci. 2009, 13, 238–245.
[61]  Price, A.J.; Balkcom, K.B.; Culpepper, A.S.; Kelton, J.A.; Nichols, R.L.; Schomberg, H.H. Glyphosate-resistant Palmer amaranth: A threat to conservation tillage. J. Soil Water Conserv. 2011, 66, 265–275, doi:10.2489/jswc.66.4.265.
[62]  Reeves, D.W.; Price, A.J.; Patterson, M.G. Evaluation of three winter cereals for weed control in conservation-tillage non-transgenic cotton. Weed Technol. 2005, 19, 731–736, doi:10.1614/WT-04-245R1.1.
[63]  Culpepper, A.S.; Kichler, J.; Sosnoskie, L.; York, A.; Sammons, D.; Nichols, R. Integrating cover crop residue and moldboard plowing into glyphosate-resistant Palmer amaranth management programs, 1531. In Proceedings of Beltwide Cotton Conference, New Orleans, LA, USA, 4–7 January 2010.
[64]  Price, A.J.; Stoll, M.E.; Bergtold, J.S.; Arriaga, F.J.; Balkcom, K.S.; Kornecki, T.S.; Raper, R.L. Effect of cover crop extracts on cotton and radish radicle elongation. Comm. Biometry Crop Sci. 2008, 3, 60–66.
[65]  Reberg-Horton, S.; Burton, J.; Danehower, D.; Ma, G.; Monks, D.; Murphy, J.; Ranells, N.; Williamson, J.; Creamer, N. Changes over time in the allelochemical content of ten cultivars of rye (Secale cereale L.). J. Chem. Ecol. 2005, 31, 179–193.
[66]  Saini, M.; Price, A.J.; van Santen, E. Cover crop residue effects on early-season weed establishment in a conservation-tillage corn-cotton rotation. In Proceeding of the 28th Southern Conservation Tillage Conference, Amarillo, TX, USA, 26–28 June 2006; Volume 28, pp. 175–178.
[67]  Childs, D.; Jordan, T.; Ross, M.; Bauman, T. Weed Control in No-Tillage Systems; Conservational Tillage Series CT-2; Purdue University Cooperative Extension Service: West Lafayette, IN, USA, 2001.
[68]  Thullen, R.J.; Keeley, P.E. Control of ivyleaf morningglory (Ipomoea hederacea) in cotton (Gossypium hirsutum) by combinations of methods. Weed Tech. 1994, 8, 772–776.
[69]  Wright, S.D.; Vargas, R.N. Integrating weed management tools in cotton and corn: GMO’s and conventional herbicides. Proc. Calif. Weed Sci. Soc. 2003, 55, 117–122.
[70]  Malik, M.S.; Norsworthy, J.K.; Culpepper, A.S.; Riley, M.B.; Bridges, W., Jr. Use of wild radish (Raphanus raphanistrum) and rye cover crops for weed suppression in sweet corn. Weed Sci. 2008, 56, 588–595, doi:10.1614/WS-08-002.1.
[71]  Price, A.J.; Balkcom, K.S.; Duzy, L.M.; Kelton, J.A. Herbicide and cover cop residue integration for Amaranth control in conservation agriculture cotton. Weed Technol. 2012, 26, 490–498, doi:10.1614/WT-D-11-00127.1.
[72]  Aulakh, J.S.; Price, A.J.; Balkcom, K.S. Weed management and cotton yield under two row spacings in conventional and conservation tillage systems utilizing conventional, glufosinate- and glyphosate-based weed management systems. Weed Technol. 2011, 25, 542–547, doi:10.1614/WT-D-10-00124.1.
[73]  Balkcom, K.S.; Price, A.J.; van Santen, E.; Delaney, D.P.; Boykin, D.L.; Arriaga, F.J.; Bergtold, J.S.; Kornecki, T.S.; Raper, R.L. Row spacing, tillage system and herbicide technology affects cotton plant growth and yield. Field Crops Res. 2010, 117, 219–225, doi:10.1016/j.fcr.2010.03.003.
[74]  Daniel, J.B.; Abaye, A.O.; Alley, M.M.; Adcock, C.W.; Maitland, J.C. Winter annual cover crops in a Virginia no-till cotton production system: II. Cover crop and tillage effects on soil moisture, cotton yield and cotton quality. J. Cotton Sci. 1999, 3, 84–91.
[75]  Unger, P.W.; Vigil, M.F. Cover crops effects on soil water relationships. J. Soil Water Cons. 1998, 53, 241–244.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413