全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Agronomy  2013 

Production of Phaseolus vulgaris L. Genotypes with Tithonia diversifolia (Hemsl.) Gray and Cajanus cajan (L.) Millsp.

DOI: 10.3390/agronomy3010232

Keywords: bean genotypes, mulch, bean yield, shoot biomass, phosphorus uptake efficiency, phosphorus utilization efficiency

Full-Text   Cite this paper   Add to My Lib

Abstract:

Adding mulch biomass prior to crop seeding may improve production of tropical soil. We evaluated the response of four bean ( Phaseolus vulgaris L.) genotypes to the addition of mulch biomass from Tithonia diversifolia (Hemsl.) Gray and Cajanus cajan L. Millsp. The addition of mulch did not result in significant differences ( p < 0.05) in soil characteristics when compared to a control (no mulch addition) except for soil potassium (K), which was significantly greater ( p < 0.05) in the T. diversifolia mulch biomass treatment. Bean yield and shoot biomass were significantly greater ( p < 0.05) in the mulch biomass treatments compared to the control (no biomass added). In these treatments, Phosphorus (P)-efficient bean genotypes had a significantly greater ( p < 0.05) yield and shoot biomass. Bean shoot nutrient concentrations were significantly different ( p < 0.05) between mulch biomass treatments and between bean genotypes (P, K and magnesium (Mg) only). Phosphorus utilization and uptake efficiencies were significantly different ( p < 0.05) between mulch biomass treatments and between bean genotypes. Bean root biomass was not significantly different ( p < 0.05) between mulch biomass treatments, but was significantly different ( p < 0.05) between bean genotypes. The number of root nodules was significantly greater ( p < 0.05) in the T. diversifolia mulch biomass treatment and was significantly different between bean genotypes.

References

[1]  Zhonqui, H.; Griffin, T.S.; Honeycutt, C.W. Evaluation of soil phosphorus transformations by sequential fractionation and phosphatase hydrolysis. Soil Sci. 2004, 169, 515–527, doi:10.1097/01.ss.0000135164.14757.33.
[2]  Oberson, A.; Pypers, P.; Bünemann, E.K.; Frossard, E. Management Impacts on Biological Phosphurus Cycling in Cropped Soils. In Phosphorus in Action; Bünemann, E.K., Ed.; Springer Verlag: Berlin, Germany, 2011; pp. 431–457.
[3]  Opala, P.A.; Okalebo, J.R.; Othieno, C.O.; Kisinyo, P. Effect of organic and inorganic phosphorus sources on maize yields in an acid soil in western Kenya. Nutr.Cycl. Agroecosyst. 2010, 86, 317–329, doi:10.1007/s10705-009-9294-3.
[4]  Bitocchi, E.; Nanni, L.; Bellucci, E.; Rossi, M.; Giardini, A.; Zeuli, P.; Logozzo, G.; Stougaard, J.; McClean, P.; Attene, G.M.; et al. Mesoamerican origin of the common bean (Phaseolus vulgaris L.) is revealed by sequence data. Proc. Natl. Acad. Sci. USA 2012, doi:10.1073/pnas.1108973109.
[5]  Fageria, N.K.; Dos Santos, A.B.; Moreira, A. Yield, nutrient uptake, and changes in soil chemical properties as influenced by liming and iron application in common bean in a no-tillage syste. Commun. Soil Sci. Plan. 2010, 41, 1740–1749, doi:10.1080/00103624.2010.489137.
[6]  Henry, A.; Kleinman, P.J.A.; Lynch, J.P. Phosphorus runoff from a phosphorus deficient soil under common bean (Phaseolus vulgaris L.) and soybean (Glycine max L.) genotypes with contrasting root architecture. Plant Soil 2009, 317, 1–16, doi:10.1007/s11104-008-9784-0.
[7]  Lynch, J.P. Root architecture and plant productivity: Update on Root Biology. Plant Physiol. 1995, 109, 7–13.
[8]  Miller, C.R.; Ochoa, I.; Nielsen, K.L.; Beck, D.; Lynch, J.P. Genetic variation for adventitious rooting response to low phosphorus availability: Potential utility for phosphorus acquisition from stratified soils. Funct. Plant Biol. 2003, 30, 973–985, doi:10.1071/FP03078.
[9]  Pretty, J. Agricultural sustainability: Concepts, principles and evidence. Phil. Trans. R. Soc. B 2008, 363, 447–465, doi:10.1098/rstb.2007.2163.
[10]  Young, A. Agroforestryfor Soil Conservation; CABI: Wallingford, UK, 1997; p. 289.
[11]  Buresh, R.J.; Smithson, P.C.; Hellums, D.T. Building Soil Phosphorus Capital in Africa. In Replenishing Soil Fertility in Africa, Proceedings of an International Symposium, Indianapolis, IN, USA, 6 November 1997; Buresh, R.J., Ed.; Soil Science Society of America: Madison, WI, USA, 1997; pp. 111–149.
[12]  Palm, C.A.; Myers, R.K.J.; Nandwa, S.W. Combined use of organic and inorganic nutrient sources for soil fertility maintenance and replenishmen. In Replenishing Soil Fertility in Africa; Proceedings of an International Symposium, Indianapolis, IN, USA, 6 November 1997; Buresch, R.J., Sanchez, P.A., Calhoum, R., Eds.; Soil Science Society of America: Madison, WI, USA, 1997; pp. 193–251.
[13]  Muchane, M.N.; Jama, B.; Othieno, C.; Okalebo, R.; Odee, D.; Machua, J.; Jasna, J. Influence of improved fallow systems and phosphorus application on arbuscularmycorrhizal fungi symbiosis in maize grown in western Kenya. Agrofor. Syst. 2010, 78, 139–150, doi:10.1007/s10457-009-9249-3.
[14]  Partey, S.T.; Quashie-Sam, S.J.; Thevathasan, N.V.; Gordon, A.M. Decomposition and nutrient release patterns of the leaf biomass of the wild sunflower (Tithonia diversifolia): A comparative studies with four leguminous agroforestry species. Agrofor. Syst. 2011, 81, 123–134, doi:10.1007/s10457-010-9360-5.
[15]  Jama, B.; Palm, C.A.; Buresh, R.J.; Niang, A.; Gachengo, C.; Nziguheba, G.; Amadalo, B. Tithonia diversifolia as a green manure for soil fertility improvement in western Kenya: A review. Agrofor. Syst. 2000, 49, 201–221, doi:10.1023/A:1006339025728.
[16]  Gentile, R.; van Lauwe, B.; Six, J. Litter quality impacts short- but not long-term soil carbon dynamics in soil aggregate fractions. Ecol. Appl. 2011, 21, 695–703, doi:10.1890/09-2325.1.
[17]  Mustonen, P.S.; Oelbermann, M.; Kass, D.C.L. Using Tithonia diversifolia (Hemsl.) Gray in a short fallow system to increase soil phosphorus on a Costa Rican Andosol. J. Agric. Sci. 2012, 4, 91–100.
[18]  Mustonen, P.S. Biomass Production, Nutrients and Root Characteristics of Fallow Species and the Utilization of Its Biomass as a Phosphorus Source for the Common Bean (Phaseolus vulgaris L.). Ph.D. Thesis, Degree-Granting University, CATIE, Turrialba, Costa Rica, 2005.
[19]  Holdridge, L.R. EcologíaBasada en Zonas de Vida; IICA: San Jose, Costa Rica, 1987.
[20]  Hernández-Fonseca, J.C.; Elizondo-Porras, F.I. Estudiosobre la adopción de variedadesmejoradas de frijol en lasprincipalszonasproductoras de frijol de la region Brunca de Costa Rica. Agron. Mesoam. 2006, 17, 357–367.
[21]  Asfaw, A.; Blair, M.W.; Struik, P. Multi-environment quantitative train loci analysis of photosynthate acquisition, accumulation, and remobilization traits in common bean under drought stress. Genes Genomes Genet. 2012, 5, 579–595.
[22]  Nielsen, K.L.; Eshel, A.; Lynch, J.P. The effect of phosphorus availability on the carbon economy of contrasting common bean (Phaseolus vulgaris L.) genotypes. J. Exp. Bot. 2001, 52, 329–339, doi:10.1093/jexbot/52.355.329.
[23]  Sparks, D. Methods of Soil Analysis Part 3: Chemical Analysis. In American Society of Agronomy; Madison: Wisconsin, WI, USA, 1996.
[24]  Zhu, Y.G.; Smith, S.E.; Barritt, A.R.; Smith, F.A. Phosphorus (P) efficiency and mycorrhizal responsiveness of old and modern wheat cultivars. Plant Soil 2001, 237, 249–255, doi:10.1023/A:1013343811110.
[25]  Steel, G.C.; Torrie, J.H.; Dikey, D.A. Principles and Procedures of Statistics: A Biometrical Approach; McGraw-Hill: New York, NY, USA, 1997.
[26]  Amusan, A.O.; Adetunji, M.T.; Azeez, J.O.; Bodunde, J.G. Effect of the integrated use of legume residue, poultry manure and inorganic fertilizers on maize yield, nutrient uptake and soil properties. Nutr. Cycl. Agroecosyst. 2011, 90, 321–330, doi:10.1007/s10705-011-9432-6.
[27]  Das, P.; Pal, R.; Bhattacharyya, P. Temporal variation of soil nutrients under the influence of different organic amendments. Arch. Agron. Soil Sci. 2012, 58, 745–757, doi:10.1080/03650340.2010.540011.
[28]  Opala, P.A.; Okalebo, J.R.; Othieno, C. Comparison of effects of phosphorus sources on soil acidity, available phosphorus and maize yields at two sites in western Kenya. Arch. Agron. Soil Sci. 2012.
[29]  Miller, D.M.; Miller, W.P. Land Application of Wastes. In Handbook of Soil Science; Summer, M., Ed.; CRC Press: Boca Raton, FL, USA, 2000. Chapter 9.
[30]  The, C.; Calba, H.; Zonkeng, C.; Ngokeu, E.L.M.; Adetimirin, V.O.; Mafouasson, H.A.; Meka, S.S.; Horst, W.J. Responses of maize grain yield to changes in acid soil characteristics after soil amendments. Plant Soil 2006, 284, 45–57, doi:10.1007/s11104-006-0029-9.
[31]  Diacono, M.; Montemurro, F. Long-term effects of organic amendments on soil fertility. Sustain. Agric. 2011, 2, 761–786.
[32]  Lopez, B.F.L. Comparación de la dinámica del fósforo en cultivo en callejones y coberturas orgánicas para frijol (Phaseolus vulgaris L.) en San Juan Sur, Turrialba, Costa Rica. Master’s Thesis, CATIE, Turrialba, Costa Rica, 1995.
[33]  Gosh, P.K.; Mohanty, M.; Bandyopadhyay, K.K.; Painuli, D.K.; Misra, A.K. Growth, competition, yields advantage and economics in soybean/pigeonpea intercropping system in semi-arid tropics of India II. effect of nutrient management. Field Crop. Res. 2006, 96, 90–97, doi:10.1016/j.fcr.2005.05.010.
[34]  Mukuralinda, A.; Tenywa, J.S.; Verchot, L.; Obua, J.; Nabahungu, N.L.; Chianu, J.N. Phosphorus uptake and maize response to organic and inorganic fertilizer inputs in Rubona, southern Province of Rwanda. Agfor. Syst. 2010, 80, 211–221.
[35]  Valdez-Perez, M.A.; Fernandez-Luquenoa, F.; Franco-Hernandez, O.; Flores Coteraa, L.B.; Dendoovena, L. Cultivation of beans (Phaseolus vulgaris L.) in limed or unlimed wastewater sludge, vermicompost or inorganic amended soil. Sci. Hortic. 2011, 128, 380–387, doi:10.1016/j.scienta.2011.01.016.
[36]  Henry, A.; Chaves, N.F.; Kleinman, P.J.A.; Lynch, J.P. Will nutrient-efficient genotypes mine the soil? Effects of genetic differences in root architecture in common bean (Phaseolus vulgaris L.) on soil phosphorus depletion in a low-input agro-ecosystem in Central America. Field Crop. Res. 2010, 115, 67–78, doi:10.1016/j.fcr.2009.10.004.
[37]  Roy, S.; Arunachalam, K.; Dutta, B.K.; Arunachalam, A. Effect of organic amendments of soil in growth and productivity of three common crops viz. Zea mays, Phaseolus vulgaris and Abelmoschus esculentus. Appl. Soil Ecol. 2010, 45, 76–84.
[38]  Fageria, N.K.; Dos Santos, A.B.; Moreira, A. Differential soil acidity tolerance of dry bean genotypes. Commun. Soil Sci. Plant Anal. 2012, 43, 1523–1531, doi:10.1080/00103624.2012.675389.
[39]  Ho, M.D.; Rosas, J.C.; Brown, K.M.; Lynch, J.P. Root architectural trade-offs for water and phosphorus acquisition in heterogeneous environments. Funct. Plant Ecol. 2005, 32, 737–748.
[40]  Niang, A.I.; Gathumbi, S.M.; Amadalo, B. The potential of improved fallow for crop productivity enhancement in the highlands of western Kenya. East Afr. Agric. Forum J. 1996, 62, 103–124.
[41]  Vargas, A.A.T.; Graham, P.H. Phaseolus vulgaris cultivar and rhizobium strain variation in acid-pH tolerance and nodulation under acid conditions. Field Crop. Res. 1988, 19, 91–101, doi:10.1016/0378-4290(88)90047-0.
[42]  Giller, K.E. Nitrogen Fixation in Tropical Cropping Systems; CABI: Wallingford, UK, 2001; p. 442.
[43]  Teixeira, M.G.; Guerra, J.G.M.; Almeida, D.L.; Araujo, A.P.; Franco, A.A. Effect of seed phosphorus concentration on nodulation and growth of three common bean cultivars. J. Plant Nutr. 1999, 22, 1599–1611, doi:10.1080/01904169909365740.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413