全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Microarrays  2013 

Phenotypic MicroRNA Microarrays

DOI: 10.3390/microarrays2020063

Keywords: microRNA, siRNA, phenotypic screen

Full-Text   Cite this paper   Add to My Lib

Abstract:

Microarray technology has become a very popular approach in cases where multiple experiments need to be conducted repeatedly or done with a variety of samples. In our lab, we are applying our high density spots microarray approach to microscopy visualization of the effects of transiently introduced siRNA or cDNA on cellular morphology or phenotype. In this publication, we are discussing the possibility of using this micro-scale high throughput process to study the role of microRNAs in the biology of selected cellular models. After reverse-transfection of microRNAs and siRNA, the cellular phenotype generated by microRNAs regulated NF-κB expression comparably to the siRNA. The ability to print microRNA molecules for reverse transfection into cells is opening up the wide horizon for the phenotypic high content screening of microRNA libraries using cellular disease models.

References

[1]  Fire, A. RNA-triggered gene silencing. Trend Genet 1999, 15, 358–363, doi:10.1016/S0168-9525(99)01818-1.
[2]  Sharp, P.A. RNA interference—2001. Genes Dev. 2001, 15, 485–490, doi:10.1101/gad.880001.
[3]  Elbashir, S.M.; Harborth, J.; Lendeckel, W.; Yalch, A.; Weber, K.; Tuschl, T. Duplex of 21-nucleotide RNAs mediates RNA interference in cultured mammalian cells. Nature 2001, 411, 494–498.
[4]  Wianny, F.; Zrnicka-Goetz, M. Specific interference with gene function by double-stranded RNA in early mouse development. Nature Cell Biol. 2000, 2, 70–75, doi:10.1038/35000016.
[5]  Sharma, S.; Rao, A. RNAi screening: Tips and techniques. Nat. Immunol. 2009, 10, 799–804, doi:10.1038/ni0809-799.
[6]  Seyhan, A.A.; Ryan, T.E. RNAi screening for the discovery of novel modulators of human diseases. Curr. Pharmaceut. Biotechnol. 2010, 11, 735–756, doi:10.2174/138920110792927766.
[7]  Mohr, S.; Bakal, C.; Perrimon, N. Genomic screening with RNAi: Results and challenges. Ann. Rev. Biochem. 2010, 79, 37–64, doi:10.1146/annurev-biochem-060408-092949.
[8]  Sood, P.; Krek, A.; Zavolan, M.; Macino, G.; Rajewsky, N. Cell-type-specific signatures of microRNAs on target mRNA expression. Proc. Natl. Acad. Sci. USA 2006, 103, 2746–2751.
[9]  Baek, D.; Villen, J.; Shin, C.; Camargo, F.D.; Gygi, S.P.; Bartel, D.P. The impact of microRNAs on protein output. Nature 2008, 455, 64–71.
[10]  Guo, H.; Ingolia, N.T. Mammalian microRNAs predominantly act to decrease target mRNA level. Nature 2010, 466, 835–840.
[11]  Pasquinelli, A.E.; Hunter, S.; Bracht, J. MicroRNAs: A developing story. Curr. Opin. Genet. Dev. 2005, 15, 200–205, doi:10.1016/j.gde.2005.01.002.
[12]  Janas, M.M.; Wang, E.; Love, T.; Harris, A.S.; Stevenson, K.; Semmelmann, K.; Shaffer, J.M.; Chen, P.H.; Novina, C.D. Reduced expression of ribosomal proteins relieves micro-RNA-mediate repression. Mol. Cell 2012, 46, 171–186.
[13]  Wang, Z. The guideline of the design and validation of miRNA mimics. Methods Mol. Biol. 2011, 676, 211–223, doi:10.1007/978-1-60761-863-8_15.
[14]  Sokilde, R.; Barken, K.B.; Mouritzen, P.; Moller, S.; Litman, T. MicroRNA expression analysis by LNA enhanced microarrays. In MicroRNA Profiling in Cancer; Gusev, Y., Ed.; Pan Stanford Publisher: Singapore, 2010.
[15]  Pandey, P.; Brors, B.; Srivastava, P.K.; Bott, A.; Boehn, S.N.E.; Groene, H.J.; Gretz, N. Microarrays-based approach identifies microRNAs and their target functional patterns in polycystic kidney disease. BMC Genomics 2008, doi:10.1186/1471-2164-9-624.
[16]  Keklikoglou, I.; Koerner, C.; Schmidt, C.; Zhang, J.D.; Heckmann, D.; Shavinskaya, A.; Allgayer, H.; Guckel, B.; Fehm, T.; Schneewewiss, A.; Sahin, O.; Wiemann, S.; Tschulena, U. MicroRNA-520/373 family functions as a tumor suppressor in estrogen receptor negative breast cancer by targeting NF-κB and TGF-β signaling pathways. Oncogene 2011, doi:10.1038/onc.2011.571.
[17]  Zhang, Y.; Fan, K.J.; Sun, Q.; Chen, A.Z.; Shen, W.L.; Zhao, Z.H.; Zheng, X.F.; Yang, X. Functional screening for miRNAs targeting Smad4 identified miR-199a as a negative regulator of TGF-β signaling pathway. Nucl. Acids Res. 2012, 40, doi:10.1093/nar/gks667.
[18]  Eulalio, A.; Mank, M.; Ferro, M.D.; Zentilin, L.; Sinagra, G.; Zacchigna, S.; Giacca, M. Functional screening identifies miRNAs inducing cardiac regeneration. Nature 2012, 492, 376–381.
[19]  Schena, M.; Shalon, D.; Davis, R.W.; Brown, P.O. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 1995, 270, 467–470.
[20]  Cheung, V.G.; Morley, M.; Aguilar, F.; Massimi, A.; Kucherlapati, R.; Childs, G. Making and Reading Microarrays. Available online: http://www.rose-hulman.edu/~ahmed/making%20and%20reading%20cdna%20microarrays.pdf (accessed on 8 February 2013).
[21]  Barbulovic-Nad, I.; Lucente, M.; Sun, Y.; Zhang, M.; Wheeler, A.R.; Bussmann, M. Bio-microarray fabrication techniques—A review. Crit. Rev. Biotechnol. 2006, 26, 237–259, doi:10.1080/07388550600978358.
[22]  Ziauddin, J.; Sabatini, D.M. Micro-array of cells expressing defined cDNAs. Nature 2001, 411, 107–110, doi:10.1038/35075114.
[23]  Silva, J.M.; Mizuno, H.; Brady, A.; Lucito, R.; Hannon, G.J. RNA interference microarrays: High-throughput loss-of-function genetics in mammalian cells. PNAS 2004, 101, 6548–6552.
[24]  Mousses, S.; Caplen, N.J.; Cornelison, R.; Weaver, D.; Basik, M.; Hautaniemi, S.; Elkahloun, A.G.; Lotufo, R.A.; Choudary, A.; Dougherty, E.R.; Suh, E.; Kallioniemi, O. RNAi microarrays analysis in cultured mammalian cells. Genome Res. 2007, doi:10.1101/gr.1478703.
[25]  Karin, M.; Greten, F.R. NF-κB: Linking inflammation and immunity to cancer development and progression. Nat. Rev. Immunol. 2005, 5, 739–759.
[26]  Karin, M. Nuclear factor-κB in cancer development and progression. Nature , 2006 441, 431–436.
[27]  Hoffmann, A.; Baltimore, D. Circuitry of nuclear factor κB signaling. Immunol. Rev. 2006, 210, 171–186, doi:10.1111/j.0105-2896.2006.00375.x.
[28]  Oeckinghaus, A.; Ghosh, S. The NF-κB family of transcription factors and its regulation. Cold Spring Harb. Perspct. Biol. 2009, doi:10.1101/cshprespect.a000034.
[29]  O’Donnell, K.A.; Wentzel, E.A. c-Myc-regulated microRNAs modulate E2F1 expression. Nature 2005, 435, 839–843.
[30]  He, L.; Thomson, J.M.; Hemann, M.T.; Hernando-Monge, E.; Mu, D.; Goodson, S.; Powers, S.; Cordon-Cardo, C.; Lowe, S.W.; Hannon, G.J.; Hammond, S.M. A microRNA polycistron as a potential human oncogene. Nature 2005, 435, 828–833, doi:10.1038/nature03552.
[31]  Mraz, M.; Pospisilova, S.; Malinova, K.; Slapak, I.; Mayer, J. MicroRNAs in chronic lymphocytic leukemia pathogenesis and disease subtypes. Leuk. Lymphoma 2009, 50, 506–509, doi:10.1080/10428190902763517.
[32]  Cordes, K.; Srivastava, D. MicroRNA regulation of cardiovascular development. Circ. Res. 2009, doi:10.1161/circresaha.108.192872.
[33]  Ma, X.; Becker Buscaglia, L.E; Barker, J.R.; Li, Y. MicroRNAs in NF-κB signaling. J. Mol. Cell Biol. 2011, doi:10.1093/jmcb/mjr007.
[34]  Liu, P.; Wilson, M.J. MiR-520c and miR373 upregulate MMP9 expression by targeting mTOR and SIRT1, and activate the Ras/Raf/MEK/Erk signaling pathway and NF-κB factor in Human fibrosarcoma cells. J. Cell. Physiol. 2012, 277, 867–876.
[35]  Wang, L.; Kang, F.; Shan, B.; Liu, L.; Sang, M. Targeting NF-κB p65 with an artificial microRNA suppress growth of MDA-MB-231 human triple-negative breast cancer cell line. Gene Ther. Mol. Biol. 2012, 14, 30–41.
[36]  Huang, S.; Robinson, J.B.; Deguzman, A.; Bucana, C.D.; Fidler, I.J. Blockade of nuclear factor-κB signaling inhibits angiogenesis and tumorigenecity of human ovarian cancer cells by suppressing expression of vascular endothelial growth factor and interleukin 8. Cancer Res. 2000, 60, 5334–5339.
[37]  Huang, Q.; Gumireddy, K.; Schrier, M.; le Sage, C.; Nagel, R.; Nair, S.; Egan, D.A.; Li, A.; Huang, G.; Pure, E.; Agami, R. The microRNAs miR-373 and miR-520c promote tumor invasion and metastasis. Nat. Cell Biol. 2008, 10, 202–210, doi:10.1038/ncb1681.
[38]  Erfle, H.; Neumann, B.; Liebel, U.; Rogers, P.; Held, M.; Walter, T.; Ellenberg, J.; Pepperkok, R. Reverse transfection on cell arreys for high content screening microscopy. Nat. Protocol. 2007, 2, 392–399.
[39]  Erfle, H.; Neumann, B.; Rogers, P.; Bulkescher, J.; Ellenberg, J.; Pepperkok, R. Work flow for multiplexing siRNA assays by solid-pahse reverse trasnfection in multiwell plates. J. Biomol. Screen. 2008, 13, 575–580, doi:10.1177/1087057108320133.
[40]  Genovesio, A.; Giardini, M.A.; Kwon, Y.J.; Dossin, F.D.M.; Choi, S.Y.; Kim, N.Y.; Kim, H.C.; Jung, S.Y.; Schenkman, S.; Almeida, I.C.; Emans, N.; Freitas-Junior, L.H.F. Visual genome-wide RNAi screening to identify human hostfactors requered for Trypanosoma cruzi infection. PLoS One 2011, 6, e19733, doi:10.1371/journal.pone.0019733.
[41]  Genovesio, A.; Kwon, Y.J.; Windisch, M.P.; Kim, N.Y.; Choi, S.Y.; Kim, H.C.; Jung, S.; Mammano, F.; Perrin, V.; Boese, A.S.; Casartelli, N.; Swartz, O.; Nehrbass, U.; Emans, N. Automated genome-wide visual profiling of cellular proteins involved in HIV infection. J. Biomol. Screen. 2011, 16, 945–958, doi:10.1177/1087057111415521.
[42]  Ikeda, S.; Kong, S.W.; Lu, J.; Bisping, E.; Zhang, H.; Allen, P.D.; Golub, T.R.; Pieske, B.; Pu, W.T. Altered microRNA expression in human heart disease. Physiol. Genom. 2007, 31, 367–373, doi:10.1152/physiolgenomics.00144.2007.
[43]  Zhu, S.; Pan, W.; Sing, X.; Liu, Y.; Tang, Y.; Liang, D.; He, D.; Wang, H.; Liu, W.; Shi, Y.; Harley, J.B.; Shen, N.; Qian, Y. The microRNA mir-23b suppress IL-17-associated autoimmune inflammation by Targeting TAB2, TAB3 and IKK-α. Nat. Med. 2012, 18, doi:10.1038/nm.2815.
[44]  Lu, J.; Getz, G.; Miska, E.A.; Alvarez-Saavedra, E.; Lamb, J.; Peck, D.; Sweet-Cordero, A.; Ebert, B.L.; Mak, R.H.; Ferrando, A.A.; Downing, J.R.; Jacks, T.; Horvitz, H.R.; Golub, T.R. MicroRNA expression profiles classify human cancers. Nature 2005, 435, doi:10.1038/nature03702.
[45]  Tavazoie, S.F.; Alarcon, C.; Oskarsson, T.; Padua, D.; Wang, Q.; Bos, P.D.; Gerald, W.L.; Massague, J. Endogenous human microRNAs that suppress breast cancer metastasis. Nature 2008, 451, 147–152.
[46]  Dai, R.; Zhang, Y.; Khan, D.; Heid, B.; Caudell, D.; Crasta, O.; Ahmed, S.A. Identification of a common lupus disease-associated microRNA expression pattern in three different murine models of Lupus. PLoS One 2010, 5, e14302, doi:10.1371/journal.pone.0014302.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413