全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Micromachines  2013 

Fabrication of a Polymer High-Aspect-Ratio Pillar Array Using UV Imprinting

DOI: 10.3390/mi4020157

Keywords: high-aspect-ratio, UV imprinting, resin mold, polydimethylsiloxane

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper presents UV imprinting methods for fabricating a high-aspect-ratio pillar array. A polydimethylsiloxane (PDMS) mold was selected as the UV imprinting mold. The pillar pattern was formed on a 50 × 50 mm 2 area on a polyethylene terephthalate (PET) film without remarkable deformation. The aspect ratios of the pillar and space were about four and ten, respectively. The mold was placed into contact with a UV-curable resin under a reduced pressure, and the resin was cured by UV light irradiation after exposure to atmospheric pressure. The PDMS mold showed good mold releasability and high flexibility. By moderately pressing the mold before UV-curing, the thickness of the residual layer of the imprinted resin was reduced and the pattern was precisely imprinted. Both batch pressing and roll pressing are available.

References

[1]  Volland, B.; Shi, F.; Hudek, P.; Heerlein, H.; Rangelow, I.W. Dry etching with gas chopping without rippled sidewalls. J. Vac. Sci. Technol. B 1999, 17, 2768–2771, doi:10.1116/1.591061.
[2]  Rangelow, I.W. Critical tasks in high aspect ratio silicon dry etching for microelectromechanical systems. J. Vac. Sci. Technol. A 2003, 21, 1550–1562, doi:10.1116/1.1580488.
[3]  Becker, E.W.; Ehrfeld, W.; Hagmann, P.; Maner, A.; Münchmeyer, D. Fabrication of microstructures with high aspect ratios and great structural heights by synchrotron radiation lithography, galvanoforming, and plastic moulding (LIGA Process). Microelectron. Eng. 1986, 4, 35–56, doi:10.1016/0167-9317(86)90004-3.
[4]  Maled, C.K.; Saile, V. Applications of LIGA technology to precision manufacturing of high-aspect-ratio micro-components and -systems: A review. Microelectron. J. 2004, 35, 131–143, doi:10.1016/j.mejo.2003.10.003.
[5]  Mappes, T.; Achenbach, S.; Mohr, J. X-ray lithography for devices with high aspect ratio polymer submicron structures. Microelectron. Eng. 2007, 84, 1235–1239, doi:10.1016/j.mee.2007.01.154.
[6]  Yang, R.; Soper, S.A.; Wang, W. A new UV lithography photoresist based on composite of EPON resins 165 and 154 for fabrication of high-aspect-ratio microstructures. Sens. Actuators A 2007, 135, 625–636, doi:10.1016/j.sna.2006.09.009.
[7]  Daniel, J.H.; Sawant, A.; Teepe, M.; Shih, C.; Street, R.A.; Antonuk, L.E. Fabrication of high aspect-ratio polymer microstructures for large-area electronic portal X-ray imagers. Sens. Actuators A 2007, 140, 185–193, doi:10.1016/j.sna.2007.06.027.
[8]  Park, J.-H.; Choi, S.-O; Seo, S.; Choy, Y.B.; Prausnitz, M.R. A microneedle roller for transdermal drug delivery. Eur. J. Pharm. Biopharm. 2010, 76, 282–289, doi:10.1016/j.ejpb.2010.07.001.
[9]  Shao, G.; Wu, J.; Cai, Z.; Wang, W. Fabrication of elastomeric high-aspect-ratio microstructures using polydimethylsiloxane (PDMS) double casting technique. Sens. Actuators A 2012, 178, 230–236, doi:10.1016/j.sna.2012.01.034.
[10]  Zhang, Y.; Lowe, R.M.; Harvey, E.; Hannaford, P.; Endo, A. High aspect-ratio micromachining of polymers with an ultrafast laser. Appl. Surf. Sci. 2002, 186, 345–351, doi:10.1016/S0169-4332(01)00673-0.
[11]  Aoyagi, S.; Izumi, H.; Isono, Y.; Fukuda, M.; Ogawa, H. Laser fabrication of high aspect ratio thin holes on biodegradable polymer and its application to a microneedle. Sens. Actuators A 2007, 139, 293–302, doi:10.1016/j.sna.2006.11.022.
[12]  Becker, H.; Heim, U. Hot embossing as a method for the fabrication of polymer high aspect ratio structures. Sens. Actuators A 2000, 83, 130–135, doi:10.1016/S0924-4247(00)00296-X.
[13]  Gates, B.D.; Xu, Q.; Stewart, M.; Ryan, D.; Willson, C.G.; Whitesides, G.M. New approaches to nanofabrication: Molding, printing, and other techniques. Chem. Rev. 2005, 105, 1171–1196, doi:10.1021/cr030076o.
[14]  Trautmann, A.; Heuck, F.; Mueller, C.; Ruther, P.; Paul, O. Replication of microneedle arrays using vacuum casting and hot embossing. In Proceedings of the 13th International Conference on Solid-State SensorsActuators and Microsystems, Seoul, Korea, 5–9 June 2005; pp. 1420–1423.
[15]  Ge, H.; Wu, W.; Li, Z.; Jung, G.-Y.; Olynick, D.; Chen, Y.; Liddle, J.A.; Wang, S.-Y.; Williams, R.S. Cross-linked polymer replica of a nanoimprint mold at 30 nm half-pitch. Nano Lett. 2005, 5, 179–182, doi:10.1021/nl048618k.
[16]  Mele, E.; Benedetto, F.D.; Persano, L.; Cingolani, R.; Pisignano, D. Polymer to polymer to polymer pattern transfer: Multiple molding for 100 nm scale lithography. J. Vac. Sci. Technol. B 2006, 24, 807–812.
[17]  Block, I.D.; Chan, L.L.; Cunningham, B.T. Large-area submicron replica molding of porous low-k dielectric films and application to photonic crystal biosensor fabrication. Microelectron. Eng. 2007, 84, 603–608, doi:10.1016/j.mee.2006.12.011.
[18]  Hong, S.-H.; Hwang, J.-Y.; Lee, H.; Lee, H.-C.; Choi, K.-W. UV nanoimprint using flexible polymer template and substrate. Microelectron. Eng. 2009, 86, 295–298, doi:10.1016/j.mee.2008.09.044.
[19]  Shibazaki, T.; Shinohara, H.; Hirasawa, T.; Sakai, N.; Taniguchi, J.; Mizuno, J.; Shoji, S. Desktop type equipment of thermal-assisted UV roller imprinting. J. Photopolym. Sci. Technol. 2009, 22, 727–730, doi:10.2494/photopolymer.22.727.
[20]  Mizuno, J.; Li, L.; Kawaguchi, Y.; Tsunozaki, K.; Shinohara, H.; Shoji, S. Anti-sticking curing of fluorinated polymers for improvement of mold releasability. J. Photopolym. Sci. Technol. 2011, 24, 89–93, doi:10.2494/photopolymer.24.89.
[21]  Park, H.; Byeon, K.-J.; Jang, J.-J.; Nam, O.; Lee, H. Enhancement of photo- and electro-luminescence of GaN-based LED structure grown on a nanometer-scaled patterned sapphire substrate. Microelectron. Eng. 2011, 88, 3207–3213, doi:10.1016/j.mee.2011.07.014.
[22]  Shinohara, H.; Tashiro, T.; Ookawa, T.; Nishihara, H. High-throughput UV nanoimprint process using flexible resin mold for high-brightness light-emitting diodes. IEEJ Trans. Sens. Micromach. 2012, 132, 235–239, doi:10.1541/ieejsmas.132.235.
[23]  Elsner, C.; Zajadacz, J.; Zimmer, K. Replication of 3D-microstructures with undercuts by UV-moulding. Microelectron. Eng. 2011, 88, 60–63, doi:10.1016/j.mee.2010.08.021.
[24]  Pelka, J. Three-dimensional simulation of ion-enhanced dry-etch processes. Microelectron. Eng. 1991, 14, 269–281, doi:10.1016/0167-9317(91)90012-3.
[25]  Goto, H.; Hagiwara, A.; Ishibashi, K.; Kokubo, M.; Okuyama, H.; Fukuyama, S. Micro pattering using UV-nanoimprinting process. J. Photopolym. Sci. Technol. 2007, 20, 559–562, doi:10.2494/photopolymer.20.559.
[26]  Youn, S.-W.; Ogiwara, M.; Goto, H.; Takahashi, M.; Maeda, R. Prototype development of a roller imprint system and its application to large area polymer replication for a microstructured optical device. J. Mater. Process. Technol. 2008, 202, 76–85, doi:10.1016/j.jmatprotec.2007.08.069.
[27]  Suzuki, Y.; Yamada, M.; Seki, M. Sol–gel based fabrication of hybrid microfluidic devices composed of PDMS and thermoplastic substrates. Sens. Actuators B 2010, 148, 323–329, doi:10.1016/j.snb.2010.04.018.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133