全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Micromachines  2013 

Molecular Surveillance of Viral Processes Using Silicon Nitride Membranes

DOI: 10.3390/mi4010090

Keywords: silicon nitride, microchips, rotavirus, RNA, electron microscopy

Full-Text   Cite this paper   Add to My Lib

Abstract:

Here we present new applications for silicon nitride (SiN) membranes to evaluate biological processes. We determined that 50-nanometer thin films of SiN produced from silicon wafers were sufficiently durable to bind active rotavirus assemblies. A direct comparison of SiN microchips with conventional carbon support films indicated that SiN performs equivalent to the traditional substrate to prepare samples for Electron Microscopy (EM) imaging. Likewise, SiN films coated with Ni-NTA affinity layers concentrated rotavirus particles similarly to affinity-coated carbon films. However, affinity-coated SiN membranes outperformed glow-discharged conventional carbon films 5-fold as indicated by the number of viral particles quantified in EM images. In addition, we were able to recapitulate viral uncoating and transcription mechanisms directed onto the microchip surfaces. EM images of these processes revealed the production of RNA transcripts emerging from active rotavirus complexes. These results were confirmed by the functional incorporation of radiolabeled nucleotides into the nascent RNA transcripts. Collectively, we demonstrate new uses for SiN membranes to perform molecular surveillance on life processes in real-time.

References

[1]  Pratt, E.D.; Huang, C.; Hawkins, B.G.; Gleghorn, J.P.; Kirby, B.J. Rare Cell Capture in Microfluidic Devices. Chem. Eng. Sci. 2011, 66, 1508–1522, doi:10.1016/j.ces.2010.09.012.
[2]  Mernier, G.; Majocchi, S.; Mermod, N.; Renaud, P. In situ evaluation of single-cell lysis by cytosol extraction observation through fluorescence decay and dielectrophoretic trapping time. Sensor Actuat. B 2012, 166, 907–912, doi:10.1016/j.snb.2012.03.057.
[3]  Maguire, T.J.; Novik, E.; Chao, P.; Barminko, J.; Nahmias, Y.; Yarmush, M.L.; Cheng, K.C. Design and application of microfluidic systems for in vitro pharmacokinetic evaluation of drug candidates. Curr. Drug. MeTable 2009, 10, 1192–1199, doi:10.2174/138920009790820093.
[4]  Akagi, J.; Khoshmanesh, K.; Evans, B.; Hall, C.J.; Crosier, K.E.; Cooper, J.M.; Crosier, P.S.; Wlodkowic, D. Miniaturized Embryo Array for Automated Trapping, Immobilization and Microperfusion of Zebrafish Embryos. PLoS One 2012, 7, doi:10.1371/journal.pone.0036630.
[5]  Ring, E.A.; de Jonge, N. Microfluidic system for transmission electron microscopy. Microsc. Microanal. 2010, 16, 622–629, doi:10.1017/S1431927610093669.
[6]  Klein, K.L.; Anderson, I.M.; de Jonge, N. Transmission electron microscopy with a liquid flow cell. J. Microsc. 2011, 242, 117–123, doi:10.1111/j.1365-2818.2010.03484.x.
[7]  Ramachandra, R.; Demers, H.; de Jonge, N. Atomic-resolution scanning transmission electron microscopy through 50-nm-thick silicon nitride membranes. Appl. Phys. Lett. 2011, 98, doi:10.1063/1.3561758.
[8]  Yuk, J.M.; Park, J.; Ercius, P.; Kim, K.; Hellebusch, D.J.; Crommie, M.F.; Lee, J.Y.; Zettl, A.; Alivisatos, A.P. High-resolution EM of colloidal nanocrystal growth using graphene liquid cells. Science 2012, 336, 61–64, doi:10.1126/science.1217654.
[9]  Taylor, K.A.; Glaeser, R.M. Retrospective on the early development of cryoelectron microscopy of macromolecules and a prospective on opportunities for the future. J. Struct. Biol. 2008, 163, 214–223, doi:10.1016/j.jsb.2008.06.004.
[10]  Rhinow, D.; Kuhlbrandt, W. Electron cryo-microscopy of biological specimens on conductive titanium-silicon metal glass films. Ultramicroscopy 2008, 108, 698–705, doi:10.1016/j.ultramic.2007.11.005.
[11]  Yoshioka, C.; Carragher, B.; Potter, C.S. Cryomesh: A new substrate for cryo-electron microscopy. Microsc. Microanal. 2010, 16, 43–53, doi:10.1017/S1431927609991310.
[12]  Degen, K.; Dukes, M.; Tanner, J.R.; Kelly, D.F. The development of affinity capture devices—a nanoscale purification platform for biological in situ transmission electron microscopy. Rsc. Adv. 2012, 2, 2408–2412, doi:10.1039/c2ra01163h.
[13]  Gilmore, B.L.; Showalter, S.P.; Dukes, M.J.; Tanner, J.R.; Demmert, A.C.; McDonald, S.M.; Kelly, D.F. Visualizing viral assemblies in a nanoscale biosphere. Lab Chip 2013, 13, 216–219, doi:10.1039/c2lc41008g.
[14]  Trask, S.D.; McDonald, S.M.; Patton, J.T. Structural insights into the coupling of virion assembly and rotavirus replication. Nat. Rev. Microbiol. 2012, 10, 165–177, doi:10.1038/nrmicro2673.
[15]  Arnold, M.M.; Patton, J.T. Rotavirus antagonism of the innate immune response. Viruses 2009, 1, 1035–1056, doi:10.3390/v1031035.
[16]  Ring, E.A.; Peckys, D.B.; Dukes, M.J.; Baudoin, J.P.; de Jonge, N. Silicon nitride windowsfor electron microscopy of whole cells. J. Microsc-Oxford 2011, 243, 273–283, doi:10.1111/j.1365-2818.2011.03501.x.
[17]  Ohi, M.; Li, Y.; Cheng, Y.; Walz, T. Negative staining and image classification—powerful tools in modern electron microscopy. Biol. Proced. Online 2004, 6, 23–34, doi:10.1251/bpo70.
[18]  Frank, J.; Radermacher, M.; Penczek, P.; Zhu, J.; Li, Y.; Ladjadj, M.; Leith, A. SPIDER and WEB: Processing and visualization of images in 3D electron microscopy and related fields. J. Struct. Biol. 1996, 116, 190–199, doi:10.1006/jsbi.1996.0030.
[19]  Scheres, S.H. A Bayesian view on cryo-EM structure determination. J. Mol. Biol. 2012, 415, 406–418, doi:10.1016/j.jmb.2011.11.010.
[20]  Zhang, X.; Settembre, E.; Xu, C.; Dormitzer, P.R.; Bellamy, R.; Harrison, S.C.; Grigorieff, N. Near-atomic resolution using electron cryomicroscopy and single-particle reconstruction. Proc. Natl. Acad. Sci. USA 2008, 105, 1867–1872.
[21]  Grigorieff Laboratory website. Available online: http://emlab.rose2.brandeis.edu/rotavirusdlp (accessed on 18 April 2012).
[22]  Mellado, M.C.; Mena, J.A.; Lopes, A.; Ramirez, O.T.; Carrondo, M.J.; Palomares, L.A.; Alves, P.M. Impact of physicochemical parameters on in vitro assembly and disassembly kinetics of recombinant triple-layered rotavirus-like particles. Biotechnol. Bioeng. 2009, 104, 674–686.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133