全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Minerals  2013 

Initial Parallel Arrangement of Extracellular Fibrils Holds a Key for Sheath Frame Construction by Leptothrix sp. Strain OUMS1

DOI: 10.3390/min3010073

Keywords: Leptothrix sp. OUMS1, sheath formation, bacterial saccharic fibril, deposition of aqueous-phase iron

Full-Text   Cite this paper   Add to My Lib

Abstract:

Early stages of sheath formation by Leptothrix sp. strain OUMS1 and its derivative sheathless mutant grown in media with or without Fe were examined by light and electron microscopy. Results showed that the initial parallel arrangement of fibrils excreted from the cells holds a key for subsequent construction of the sheath frame and that aqueous-phase Fe interacts with excreted fibrils whether fibrils are parallel-arranged or simply-intermingled.

References

[1]  Spring, S. The genera Leptothrix and Sphaerotilus. Prokaryotes 2006, 5, 758–777, doi:10.1007/0-387-30745-1_35.
[2]  Takeda, M.; Makita, H.; Ohno, K.; Nakahara, Y.; Koizumi, J. Structural analysis of the sheath of a sheathed bacterium, Leptothrix cholodnii. Int. J. Biol. Macromol. 2005, 37, 92–98, doi:10.1016/j.ijbiomac.2005.09.002.
[3]  Van Veen, W.L.; Mulder, E.G.; Deinema, M.H. The Sphaerotilus-Leptothrix group of bacteria. Microbiol. Rev. 1978, 42, 329–356.
[4]  Furutani, M.; Suzuki, T.; Ishihara, H.; Hashimoto, H.; Kunoh, H.; Takada, J. Assemblage of bacterial saccharic microfibrils in sheath skeleton formed by cultured Leptothrix sp. strain OUMS1. J. Mar. Sci. Res. Dev. 2011, S5, doi:10.4172/2155-9910.S5-001.
[5]  Furutani, M.; Suzuki, T.; Ishihara, H.; Hashimoto, H.; Kunoh, H.; Takada, J. Initial assemblage of bacterial saccharic fibrils and element deposition to form an immature sheath in cultured Leptothrix sp. strain OUMS1. Minerals 2011, 1, 157–166, doi:10.3390/min1010157.
[6]  Sawayama, M.; Suzuki, T.; Hashimoto, H.; Kasai, T.; Furutani, M.; Miyata, N.; Kunoh, H.; Takada, J. Isolation of a Leptothrix strain, OUMS1, from ocherous deposits in groundwater. Curr. Microbiol. 2011, 63, 173–180, doi:10.1007/s00284-011-9957-6.
[7]  Ghiorse, W.C. Biology of iron- and manganese-depositing bacteria. An. Rev. Microbiol. 1984, 38, 515–550, doi:10.1146/annurev.mi.38.100184.002503.
[8]  Emerson, D.; Fleming, E.J.; McBeth, J.M. Iron-oxidizing bacteria: An environmental and genomic perspective. An. Rev. Microbiol. 2010, 64, 561–583, doi:10.1146/annurev.micro.112408.134208.
[9]  Adams, L.F.; Ghiorse, W.C. Physiology and ultrastructure of Leptothrix discophora SS-1. Arch. Microbial. 1986, 145, 126–135, doi:10.1007/BF00446769.
[10]  Emerson, D.; Ghiorse, W.C. Isolation, cultural maintenance, and taxonomy of a sheath-forming strain of Leptothrix discophora and characterization of manganese-oxidizing activity associated with the sheath. Appl. Environ. Microbiol. 1992, 58, 4001–4010.
[11]  Suzuki, T.; Hashimoto, H.; Ishihara, H.; Kasai, T.; Kunoh, H.; Takada, J. Structural and spatial associations between Fe, O, and C in the network structure of the Leptothrix ochracea sheath surface. Appl. Environ. Microbiol. 2011, 77, 7873–7875, doi:10.1128/AEM.06003-11.
[12]  Mulder, E.G.; van Veen, WL. Investigations on the Sphaerotilus-Leptothrix Group. Antonie van Leeuwenhoek 1963, 29, 121–153, doi:10.1007/BF02046045.
[13]  Rouf, M.A.; Stokes, J.L. Morphology, nutrition and physiology of Sphaerotilus discophorus. Arch. Microbiol. 1964, 49, 132–149.
[14]  Stokes, J.L.; Powers, M.T. Formation of rough and smooth strains of Sphaerotilus discophorus. Antonie van Leeuwenhoek 1965, 31, 157–164, doi:10.1007/BF02045886.
[15]  Suzuki, T.; Ishihara, H.; Furutani, M.; Shiraishi, T.; Kunoh, H.; Takada, J. A novel method for culturing of Leptothrix sp. strain OUMS1 in natural conditions. Minerals 2012, 2, 118–128, doi:10.3390/min2020118.
[16]  Emerson, D.; Ghiorse, W.C. Ultrastructure and chemical composition of the sheath of Leptothrix discophora SP-6. J. Bacteriol. 1993, 175, 7808–7818.
[17]  Chan, C.S.; Fakra, S.C.; Emerson, D.; Fleming, E.J.; Edwards, K.J. Lithotrophic iron-oxidizing bacteria produce organic stalks to control mineral growth: implication for biosignature formation. ISME J. 2011, 5, 717–727, doi:10.1038/ismej.2010.173.
[18]  Takeda, M.; Kawasaki, Y.; Umezu, T.; Shimura, S.; Hasegawa, M.; Koizumi, J. Patterns of sheath elongation, cell proliferation, and manganese(II) oxidation in Leptothrix cholodni. Arch. Microbiol. 2012, 194, 667–673, doi:10.1007/s00203-012-0801-6.
[19]  Chan, C.S.; Stasio, G.D.; Welch, S.A.; Girasole, M.; Frazer, B.H.; Nesterova, M.V.; Fakra, S.; Branfield, J.F. Microbial polysaccharides template assembly of nanocrystal fibers. Science 2004, 303, 1656–1658.
[20]  Park, P.; Ohno, T.; Kato-Kikuchi, H.; Miki, H. Alkaline bismuth stain: A tracer for Golgi vesicles of plant cells. Stain Technol. 1987, 62, 253–256.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413