全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Minerals  2013 

Integrated Approaches for the Study of Real Mineral Flotation Systems

DOI: 10.3390/min3010001

Keywords: flotation, statistical analysis, mineralogy, solution speciation, surface analysis

Full-Text   Cite this paper   Add to My Lib

Abstract:

It is more common than not, for mineral processing studies to proceed via the examination of model flotation systems with the resulting data often lacking statistical verification. The resultant concentrates and tails may then be subjected to a restricted range of analyses, for diagnosis of the flotation behavior variations observed, that themselves bias the outcomes. For instance surface analysis may be undertaken without reference to solution speciation, or liberation may be studied but surface speciation may not be taken into account. We propose an integrated approach whereby firstly the flotation data are vigorously scrutinized and the mineralogy, liberation, surface and solution speciation are examined in parallel to establish a chemical over view of the system. It is proposed that to make progress in the understanding of flotation systems, in terms of the minerals chemistry, that a multi-dimensional analytical approach is utilized and that the focus shifts towards the analysis of real ores and industrial flotation systems.

References

[1]  Greet, C.J. The Significance of Grinding Environment on the Flotation of UG2 Ores. In Proceedings of 3rd International Platinum Conference, Sun City, South Africa, 5–9 October 2008.
[2]  Piantadosi, C.; Jasieniak, M.; Skinner, W.M.; Smart, R.S.C. Statistical comparison of surface species in flotation concentrates and tails from TOF-SIMS evidence. Miner. Eng. 2000, 13, 1377–1394, doi:10.1016/S0892-6875(00)00120-5.
[3]  Napier-Munn, T.J. Designing and analysing plant trials. In Flotation Plant Optimisation: A Metallurgical Guide to Identifying and Solving Problems in Flotation Plants; Greet, C.J., Ed.; Australasian Institute of Mining and Metallurgy: Carlton, Victoria, Australia, 2010; pp. 175–190.
[4]  Napier-Munn, T.J. Statistical methods to compare batch flotation grade-recovery curves and rate constants. Miner. Eng. 2012, 34, 70–77, doi:10.1016/j.mineng.2012.03.036.
[5]  Vera, M.A.; Franzidis, J.P.; Manlapig, E.V. The Locus of Flotation Performance. In Proceedings of the XXI International Mineral Processing Congress, Rome, Italy, 23–28 July 2000.
[6]  Mason, R.L.; Gunst, R.F.; Hess, J.L. Statistical Design and Analysis of Experiments; John Wiley and Sons: New York, NY, USA, 1989.
[7]  Lewis, J.S. A Hydrodynamic Investigation of Platinum Flotation in a Pilot Flotation PlantMaster’s Thesis, University of Cape Town, Cape Town, South Africa, 2003.
[8]  Van Tonder, E.; Deglon, D.A.; Napier-Munn, T.J. The effect of ore blends on the mineral processing of platinum ores. Miner. Eng. 2010, 23, 621–626, doi:10.1016/j.mineng.2010.02.008.
[9]  Napier-Munn, T.J. Detecting performance improvements in trials with time-varying mineral processes. Miner. Eng. 1995, 8, 843–858, doi:10.1016/0892-6875(95)00047-T.
[10]  Napier-Munn, T.J. Analysing plant trials by comparing recovery-grade regression lines. Miner. Eng. 1998, 11, 949–958, doi:10.1016/S0892-6875(98)00082-X.
[11]  Napier-Munn, T.J. Some Practical Problems in Running Statistically Valid Plant Trials and Their Solution. In Proceedings of MetPlant 2008: Metallurgical Plant Design and Operating Strategies, Perth, Western Australia, Australia, 18–19 August 2008.
[12]  Shaff, J.O.; Schultz, B.A.; Craft, E.J.; Clark, R.T.; Kochian, L.V. GEOCHEM-EZ: A chemical speciation program with greater power and flexibility. Plant Soil 2010, 330, 207–214, doi:10.1007/s11104-009-0193-9.
[13]  Toran, L.; Grandstaff, D. PHREEQC and PHREEQCI: Geochemical modeling with an interactive interface. Ground Water 2002, 40, 462–464.
[14]  Allison, J.D.; Brown, D.S.; Novo-Gradac, K.J. MINTEQA2/PRODEFA2,A Geochemical Assessment Model for Environmental Systems: Version 3.0 User’s Manual; U.S. Environmental Protection Agency: Athens, GA, USA, 1990.
[15]  Malysiak, V.; O’Connor, C.T.; Ralston, J.; Gerson, A.R.; Coetzera, L.P.; Bradshaw, D.J. Pentlandite–feldspar interaction and its effect on separation by flotation. Int. J. Miner. Process. 2002, 66, 89–106, doi:10.1016/S0301-7516(02)00007-8.
[16]  Halim, C.E.; Short, S.A.; Scott, J.A.; Amal, R.; Low, G. Modelling the leaching of Pb, Cd, As, and Cr from cementitious waste using PHREEQC. J. Hazard. Mater. 2005, 125, 45–61, doi:10.1016/j.jhazmat.2005.05.046.
[17]  Yongjun, P.; Bo, W.; Gerson, A. The effect of electrochemical potential on the activation of pyrite by copper and lead ions during grinding. Int. J. Miner. Process. 2012, 102, 141–149, doi:10.1016/j.minpro.2011.11.010.
[18]  Gerson, A.R.; Smart, R.S.C.; Li, J.; Kawashima, N.; Weedon, D.; Triffett, B.; Bradshaw, D. Diagnosis of the surface chemical influences on flotation performance: Copper sulfides and molybdenite. Int. J. Miner. Process. 2012, 106–109, 16–30, doi:10.1016/j.minpro.2012.01.004.
[19]  Smart, R.S.C. Surface layers in base metal sulfide flotation. Miner. Eng. 1991, 4, 891–909, doi:10.1016/0892-6875(91)90072-4.
[20]  Gerson, A.R.; Jasieniak, M. The Effect of Surface Oxidation on the Cu Activation of Pentlandite and Pyrrhotite. In Proceedings of the XXIV International Minerals Processing Congress, Beijing, China, 24–28 September 2008.
[21]  Nesbitt, H.W.; Bancroft, G.M.; Davidson, R.; McIntyre, N.S.; Pratt, A.R. Minimum XPS core-level line widths of insulators, including silicate minerals. Am. Mineral. 2004, 89, 878–882.
[22]  Huang, P.; Cao, M.; Liu, Q. Using chitosan as a selective depressant in the differential flotation of Cu–Pb sulfides. Int. J. Miner. Process. 2012, 106–109, 8–15, doi:10.1016/j.minpro.2012.01.001.
[23]  Petrus, H.T.B.M.; Hirajima, T.; Sasaki, K.; Okamoto, H. Effects of sodium thiosulphate on chalcopyrite and tennantite: An insight for alternative separation technique. Int. J. Miner. Process. 2012, 102–103, 116–123, doi:10.1016/j.minpro.2011.11.002.
[24]  Chandra, A.P.; Gerson, A.R. Pyrite (FeS2) oxidation: A sub-micron synchrotron investigation. Geochim. Cosmochim. Acta 2011, 75, 6239–6254, doi:10.1016/j.gca.2011.08.005.
[25]  Piantadosi, C.; Pyke, B.L.; Smart, R.S.C. ToF-SIMS Statistical Analysis of Surface Hydrophobic/Hydrophilic Species Ratios and Contact Angle Estimation in Real Ore Systems. In Proceedings of the fourth UBC-McGill International Symposium on Fundamentals of Mineral Processing, Toronto, ON, Canada, 26–29 August 2001.
[26]  Piantadosi, C.; Smart, R.S.C. Statistical comparison of hydrophobic and hydrophilic species on galena and pyrite particles in flotation concentrates and tails from ToF-SIMS evidence. Int. J. Miner. Process. 2002, 64, 43–54, doi:10.1016/S0301-7516(01)00075-8.
[27]  Smart, R.S.C.; Skinner, W.M.; Gerson, A.R.; Mielczarski, J.; Chryssoulis, S.; Pratt, A.R.; Lastra, R.; Hope, G.A.; Wang, X.; Fa, K.; et al. Surface characterisation and new tools for research. In Froth Flotation: A Century of Innovation; Fuerstenau, M.C., Jameson, G., Yoon, R.-H., Eds.; SME Publications: Littleton, CO, USA, 2007; pp. 283–338.
[28]  Smart, R.S.C.; Biesinger, M.C.; Hart, B.R. Statistical Methods Applied to Surface Chemistry in Minerals Flotation. US Patent 7,462,819, 9 December 2008.
[29]  Manceau, A.; Tamura, N.; Celestre, R.S.; MacDowell, A.A.; Geoffroy, N.; Sposito, G.; Padmore, H.A. Molecular-scale speciation of Zn and Ni in soil ferromanganese nodules and loess soils of the Mississippi basin. Environ. Sci. Technol. 2003, 37, 75–80, doi:10.1021/es025748r.
[30]  Fan, R.; Gerson, A.R. Nickel geochemistry of a Philippine laterite examined by bulk and microprobe synchrotron analyses. Geochim. Cosmochim. Acta 2011, 75, 6400–6415, doi:10.1016/j.gca.2011.08.003.
[31]  Rollinson, G.K.; Andersen, J.C.?.; Stickland, R.J.; Boni, M.; Fairhurst, R. Characterisation of non-sulphide zinc deposits using QEMSCAN. Miner. Eng. 2011, 24, 778–787, doi:10.1016/j.mineng.2011.02.004.
[32]  Jasieniak, M.; Smart, R.S.C. Srface chemical mechanisms of inadvertent recovery of chromite in UG2 ore flotation: Residual layer identification using statistical ToF-SIMS analysis. Int. J. Miner. Process. 2010, 94, 72–82, doi:10.1016/j.minpro.2009.12.003.
[33]  Smeink, R.G.; van Leerdam, G.C.; Mahy, J.W.G. Determination of preferential adsorption of Depramin? on mineral surfaces by ToF-SIMS. Miner. Eng. 2005, 18, 247–255, doi:10.1016/j.mineng.2004.10.019.
[34]  Biesinger, M.C.; Hart, B.R.; Polack, R.; Kobe, B.A.; Smart, R.S.C. Analysis of mineral surface chemistry in flotation separation using imaging XPS. Miner. Eng. 2007, 20, 152–162, doi:10.1016/j.mineng.2006.08.006.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133