全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Minerals  2013 

Research Using Virtual Reality: Mobile Machinery Safety in the 21st Century

DOI: 10.3390/min3020145

Keywords: mining, whole-body vibration, posture, line of sight, machine operators, mobile machines, low back injury, neck injury, biomechanics

Full-Text   Cite this paper   Add to My Lib

Abstract:

Whole-body vibration is a significant health risk for between 4% and 7% of the work force in North America. In addition, many factors compound the health risks of heavy machinery operators. For example, twisted trunk and neck postures stiffen the spine and increase the transmission of vibration to the head. Similarly, workers adopt awkward postures in order to gain appropriate lines of sight for machine operations. Although the relative contribution of these various issues can be evaluated in field studies and models, we propose that virtual reality is a powerful medium for investigating issues related to health and safety in mining machine operators. We have collected field data of posture and vibration, as well as visual environment, for a forklift operating in a warehouse. This paper describes the process and outcome of this field data collection, and provides a discussion on the next steps to develop and test the virtual reality model to enable laboratory testing. Our ongoing studies will evaluate the interplay between posture and vibration under conditions replicating routine heavy machinery operations, such as underground mining.

References

[1]  Boshuizen, H.C.; Bongers, P.M.; Hulshof, C.T. Self-reported back pain in tractor drivers exposed to whole-body vibration. Int. Arch. Occup. Environ. Health 1990, 62, 109–115, doi:10.1007/BF00383586.
[2]  Punnett, L.; Pruss-Utun, A.; Nelson, D.I.; Fingerhut, M.A.; Leigh, J.; Tak, S.; Phillips, S. Estimating the global burden of low back pain attributable to combined occupational exposures. Am. J. Ind. Med. 2005, 48, 459–469, doi:10.1002/ajim.20232.
[3]  Waters, T.; Genaidy, A.; Viruet, H.B.; Makola, M. The impact of operating heavy equipment vehicles on lower back disorders. Ergonomics 2008, 51, 602–636, doi:10.1080/00140130701779197.
[4]  Bovenzi, M. Low back pain disorders and exposure to whole-body vibration in the workplace. Semin. Perinatol. 1996, 20, 38–53, doi:10.1016/S0146-0005(96)80056-5.
[5]  Wasserman, D.E.; Wilder, D.G.; Pope, M.H.; Magnusson, M.; Aleksiev, A.R.; Wasserman, J.F. Whole-body vibration exposure and occupational work-hardening. J. Occup. Environ. Med. 1997, 39, 403–407, doi:10.1097/00043764-199705000-00005.
[6]  Bovenzi, M.; Hulshof, C.T. An updated review of epidemiologic studies on the relationship between exposure to whole-body vibration and low back pain (1986–1997). Int. Arch. Occup. Environ. Health 1999, 72, 351–365, doi:10.1007/s004200050387.
[7]  Lings, S.; Leboeuf-Yde, C. Whole-body vibration and low back pain: A systematic, critical review of the epidemiological literature 1992–1999. Int. Arch. Occup. Environ. Health 2000, 73, 290–297, doi:10.1007/s004200000118.
[8]  Boileau, P.E.; Rakheja, S. Vibration attenuation performance of suspension seats for off-road forestry vehicles. Int. J. Ind. Ergon. 1990, 5, 275–291, doi:10.1016/0169-8141(90)90063-8.
[9]  Cann, A.P.; Salmoni, A.W.; Vi, P.; Eger, T.R. An exploratory study of whole-body vibration exposure and dose while operating heavy equipment in the construction industry. Appl. Occup. Environ. Hyg. 2003, 18, 999–1005, doi:10.1080/715717338.
[10]  Eger, T.; Salmoni, A.; Cann, A.; Jack, R. Whole-body vibration exposure experienced by mining equipment operators. Occup. Ergon. 2006, 6, 121–127.
[11]  Els, P.S. The applicability of ride comfort standards to off-road vehicles. J. Terramech. 2005, 42, 47–64, doi:10.1016/j.jterra.2004.08.001.
[12]  Sherwin, L.M.; Owende, P.M.; Kanali, C.L.; Lyons, J.; Ward, S.M. Influence of tyre inflation pressure on whole-body vibrations transmitted to the operator in a cut-to-length timber harvester. Appl. Ergon. 2004, 35, 253–261, doi:10.1016/j.apergo.2004.02.002.
[13]  Village, J.; Morrison, J.B.; Leong, D.K. Whole-body vibration in underground load-haul-dump vehicles. Ergonomics 1989, 32, 1167–1183, doi:10.1080/00140138908966888.
[14]  Morrison, J.B.; Robinson, D.G.; Roddan, G.; Rylands, J.; Cameron, B.; Remedios, B.; Brown, B. Development of a Standard for the Health Hazard Assessment of Mechanical Shock and Repeated Impact in Army Vehicles—Phase 5; U.S. Army Aeromedical Research Laboratory: Fort Rucker, AL, USA, 1998.
[15]  Kumar, S. Vibration in operating heavy haul trucks in overburden mining. Appl. Ergon. 2004, 35, 509–520, doi:10.1016/j.apergo.2004.06.009.
[16]  Goglia, V.; Grbac, I. Whole-body vibration transmitted to the framesaw operator. Appl. Ergon. 2005, 36, 43–48, doi:10.1016/j.apergo.2004.09.005.
[17]  Cation, S.; Jack, R.; Oliver, M.; Dickey, J.P.; Lee Shee, N.M. Six degree of freedom whole-body vibration during forestry skidder operations. Int. J. Ind. Ergon. 2008, 38, 739–757, doi:10.1016/j.ergon.2007.10.003.
[18]  Conrad, L.F.; Oliver, M.L.; Jack, R.J.; Dickey, J.P.; Eger, T. Quantification of 6-degree-of-freedom chassis whole-body vibration in mobile heavy vehicles used in the steel making industry. J. Low Freq. Noise Vib. Act. Control 2012, 31, 85–104, doi:10.1260/0263-0923.31.2.85.
[19]  Jack, R.J.; Oliver, M.; Dickey, J.P.; Cation, S.; Hayward, G.; Lee-Shee, N. Six-degree-of-freedom whole-body vibration exposure levels during routine skidder operations. Ergonomics 2010, 53, 696–715, doi:10.1080/00140130903581631.
[20]  ISO 2631–1: Mechanical Vibration and Shock–Evaluation of Human Exposure to Whole-Body Vibration–Part 1: General Requirements; International Standards Organization: Geneva, Switzerland, 1997.
[21]  Mayton, A.G.; Amirouche, F.; Jobes, C.C. Comparison of seat designs for underground mine haulage vehicles using the absorbed power and ISO 2631–1(1985)-based ACGIH threshold limit methods. Int. J. Heavy Veh. Syst. 2005, 12, 225–238, doi:10.1504/IJHVS.2005.008027.
[22]  Eger, T.; Stevenson, J.M.; Grenier, S.; Boileau, P.E.; Smets, M.P. Influence of vehicle size, haulage capacity and ride control on vibration exposure and predicted health risks for LHD vehicle operators. J. Low Freq. Noise Vib. Act. Control 2011, 30, 45–62, doi:10.1260/0263-0923.30.1.45.
[23]  Smets, M.P.; Eger, T.R.; Grenier, S.G. Whole-body vibration experienced by haulage truck operators in surface mining operations: A comparison of various analysis methods utilized in the prediction of health risks. Appl. Ergon. 2010, 41, 763–770, doi:10.1016/j.apergo.2010.01.002.
[24]  Mandal, B.; Srivastava, A. Musculoskeletal disorders in dumper operators exposed to whole body vibration at Indian mines. Int. J. Min. Reclam. Environ. 2010, 24, 233–243, doi:10.1080/17480930903526227.
[25]  Vanerkar, A.P.; Kulkarni, N.P.; Zade, P.D.; Kamavisdar, A.S. Whole body vibration exposure in heavy earth moving machinery operators of metalliferrous mines. Environ. Monit. Assess. 2008, 143, 239–245, doi:10.1007/s10661-007-9972-z.
[26]  Blood, R.P.; Ploger, J.D.; Yost, M.G.; Ching, R.P.; Johnson, P.W. Whole body vibration exposures in metropolitan bus drivers: A comparison of three seats. J. Sound Vib. 2010, 329, 109–120, doi:10.1016/j.jsv.2009.08.030.
[27]  Cann, A.P.; Salmoni, A.W.; Eger, T.R. Predictors of whole-body vibration exposure experienced by highway transport truck operators. Ergonomics 2004, 47, 1432–1453, doi:10.1080/00140130410001712618.
[28]  Ozkaya, N.; Willems, B.; Goldsheyder, D. Whole-body vibration exposure: A comprehensive field study. Am. Ind. Hyg. Assoc. J. 1994, 55, 1164–1171, doi:10.1080/15428119491018240.
[29]  Mani, R.; Milosavljevic, S.; Sullivan, S.J. The influence of body mass on whole-body vibration: A quad-bike field study. Ergon. Open J. 2011, 4, 1–9, doi:10.2174/1875934301104010001.
[30]  Hella, F.; Tisserand, M.; Schouller, J.F. Analysis of eye movements in different tasks related to the use of lift trucks. Appl. Ergon. 1991, 22, 101–110, doi:10.1016/0003-6870(91)90308-5.
[31]  Eger, T.R.; Contratto, M.S.; Dickey, J.P. Influence of driving speed, terrain, seat performance and ride control on predicted health risk based on ISO 2631–1 and EU Directive 2002/44/EC. Low Freq. Noise Vib. Active Control 2011, 30, 291–312, doi:10.1260/0263-0923.30.4.291.
[32]  Trask, C.; Teschke, K.; Village, J.; Chow, Y.; Johnson, P.; Luong, N.; Koehoorn, M. Measuring low back injury risk factors in challenging work environments: An evaluation of cost and feasibility. Am. J. Ind. Med. 2007, 50, 687–696, doi:10.1002/ajim.20497.
[33]  Horberry, T.; Burgess-Limerick, R.; Fuller, R. The contributions of human factors and ergonomics to a sustainable minerals industry. Ergonomics 2013, 56, 556–564, doi:10.1080/00140139.2012.718800.
[34]  Santos, B.R.; Lariviere, C.; Delisle, A.; Plamondon, A.; Boileau, P.E.; Imbeau, D. A laboratory study to quantify the biomechanical responses to whole-body vibration: The influence on balance, reflex response, muscular activity and fatigue. Int. J. Ind. Ergon. 2008, 38, 626–639, doi:10.1016/j.ergon.2008.01.015.
[35]  Hansson, T.; Magnusson, M.; Broman, H. Back muscle fatigue and seated whole body vibrations: An experimental study in man. Clin. Biomech. 1991, 6, 173–178, doi:10.1016/0268-0033(91)90030-T.
[36]  Pope, M.H.; Wilder, D.G.; Magnusson, M. Possible mechanisms of low back pain due to whole-body vibration. J. Sound Vib. 1998, 215, 687–697, doi:10.1006/jsvi.1998.1698.
[37]  Kittusamy, N.K.; Buchholz, B. Whole-body vibration and postural stress among operators of construction equipment: A literature review. J. Saf. Res. 2004, 35, 255–261, doi:10.1016/j.jsr.2004.03.014.
[38]  Van Oostrom, S.H.; Verschuren, M.; de Vet, H.C.; Boshuizen, H.C.; Picavet, H.S. Longitudinal associations between physical load and chronic low back pain in the general population: The doetinchem cohort study. Spine 2012, 37, 788–796, doi:10.1097/BRS.0b013e31823239d1.
[39]  Delleman, N.; Dul, J. International standards on working postures and movements ISO 11226 and EN 1005–4. Ergonomics 2007, 50, 1809–1819, doi:10.1080/00140130701674430.
[40]  Hagberg, M.; Wegman, D.H. Prevalence rates and odds ratios of shoulder-neck diseases in different occupational groups. Br. J. Ind. Med. 1987, 44, 602–610.
[41]  Akesson, I.; Hansson, G.A.; Balogh, I.; Moritz, U.; Skerfving, S. Quantifying work load in neck, shoulders and wrists in female dentists. Int. Arch. Occup. Environ. Health 1997, 69, 461–474, doi:10.1007/s004200050175.
[42]  Jensen, B.R.; Schibye, B.; Sogaard, K.; Simonsen, E.B.; Sjogaard, G. Shoulder muscle load and muscle fatigue among industrial sewing-machine operators. Eur. J. Appl. Physiol. Occup. Physiol. 1993, 67, 467–475, doi:10.1007/BF00376465.
[43]  Toren, A. Muscle activity and range of motion during active trunk rotation in a sitting posture. Appl. Ergon. 2001, 32, 583–591, doi:10.1016/S0003-6870(01)00040-0.
[44]  Van Dieen, J.H. Asymmetry of erector spinae muscle activity in twisted postures and consistency of muscle activation patterns across subjects. Spine 1996, 21, 2651–2661, doi:10.1097/00007632-199611150-00015.
[45]  Wikstrom, B.O. Effects from twisted postures and whole-body vibration during driving. Int. J. Ind. Ergon. 1993, 12, 61–75, doi:10.1016/0169-8141(93)90038-F.
[46]  Johanning, E. Back disorders and health problems among subway train operators exposed to whole-body vibration. Scand. J. Work Environ. Health 1991, 17, 414–419, doi:10.5271/sjweh.1681.
[47]  Magnusson, M.L.; Pope, M.H. A review of the biomechanics and epidemiology of working postures (it isn’t always vibration which is to blame!). J. Sound Vib. 1998, 215, 965–976, doi:10.1006/jsvi.1998.1677.
[48]  Eger, T.; Stevenson, J.; Boileau, P.E.; Salmoni, A. Predictions of health risks associated with the operation of load-haul-dump mining vehicles: Part 1—Analysis of whole-body vibration exposure using ISO 2631–1 and ISO-2631–5 standards. Int. J. Ind. Ergon. 2008, 38, 726–738, doi:10.1016/j.ergon.2007.08.012.
[49]  Eger, T.; Stevenson, J.; Callaghan, J.P.; Grenier, S. Predictions of health risks associated with the operation of load-haul-dump mining vehicles: Part 2—Evaluation of operator driving postures and associated postural loading. Int. J. Ind. Ergon. 2008, 38, 801–815, doi:10.1016/j.ergon.2007.09.003.
[50]  ISO 11226–2000: Ergonomics—Evaluation of Static Working Postures; International Standards Organization: Geneva, Switzerland, 2000.
[51]  Eger, T.R.; Godwin, A.A.; Henry, D.J.; Grenier, S.G.; Callaghan, J.; Demerchant, A. Why vehicle design matters: Exploring the link between line-of-sight, driving posture and risk factors for injury. Work 2010, 35, 27–37.
[52]  Wuolijoki, E. Effects of simulated tractor vibration on the psychophysiological and mechanical functions of the driver: Comparison of some excitatory frequencies. Acta Forestalia Fennica 1981, 168, 1–53.
[53]  Rahmatalla, S.; Deshaw, J. Predictive discomfort of non-neutral head-neck postures in fore-aft whole-body vibration. Ergonomics 2011, 54, 263–272, doi:10.1080/00140139.2010.547606.
[54]  Hostens, I.; Amditis, A.; Stefani, O.; Dangelmaier, M.; Bekiaris, E.; Schaerli, H.; Bullinger, A.; Ramon, H. SAFEGUARD seat/compartment evaluation methodology for vehicles with suspended seats. Meas. Sci. Technol. 2004, 15, 1742–1755, doi:10.1088/0957-0233/15/9/010.
[55]  Rahmatalla, S.; Xia, T.; Contratto, M.; Kopp, G.; Wilder, D.; Frey-Law, L.; Ankrum, J. Three-dimensional motion capture protocol for seated operator in whole body vibration. Int. J. Ind. Ergon. 2008, 38, 425–433, doi:10.1016/j.ergon.2007.08.015.
[56]  Schust, M.; Kreisel, A.; Seidel, H.; Bluthner, R. Examination of the frequency-weighting curve for accelerations measured on the seat and at the surface supporting the feet during horizontal whole-body vibrations in x- and y-directions. Ind. Health 2010, 48, 725–742, doi:10.2486/indhealth.MSWBVI-06.
[57]  Dickey, J.P.; Eger, T.R.; Oliver, M.L.; Boileau, P.E.; Trick, L.M.; Edwards, A.M. Multi-axis sinusoidal whole-body vibrations: Part II—Relationship between Vibration Total Value and discomfort varies between vibration axes. J. Low Freq. Noise Vib. Act. Control 2007, 26, 195–204.
[58]  Mansfield, N.J.; Maeda, S. Subjective ratings of whole-body vibration for single- and multi-axis motion. J. Acoust. Soc. Am. 2011, 130, 3723–3728, doi:10.1121/1.3654014.
[59]  Qiu, Y.; Griffin, M.J. Biodynamic responses of the seated human body to single-axis and dual-axis vibration. Ind. Health 2010, 48, 615–627, doi:10.2486/indhealth.MSWBVI-26.
[60]  Lemerle, P.; H?ppner, O.; Rebelle, J. Dynamic stability of forklift trucks in cornering situations: Parametrical analysis using a driving simulator. Veh. Syst. Dyn. 2011, 49, 1673–1693, doi:10.1080/00423114.2010.532557.
[61]  Forde, K.A.; Albert, W.J.; Harrison, M.F.; Neary, J.P.; Croll, J.; Callaghan, J.P. Neck loads and posture exposure of helicopter pilots during simulated day and night flights. Int. J. Ind. Ergon. 2011, 41, 128–135, doi:10.1016/j.ergon.2011.01.001.
[62]  Kizil, M. Virtual reality applications in the Australian minerals industry. Appl. Comp. Oper. Res. Miner. Ind. 2003, 569–574.
[63]  Filigenzi, M.T.; Orr, T.J.; Ruff, T.M. Virtual reality for mine safety training. Appl. Occup. Environ. Hyg. 2000, 15, 465–469, doi:10.1080/104732200301232.
[64]  Yuen, K.K.; Choi, S.H.; Yang, X.B. A full-immersive CAVE-based VR simulation system of forklift truck operations for safety training. Comput. Aided Des. Appl. 2010, 7, 235–245.
[65]  Tichon, J.; Watson, G.; Wallis, G. Using feature extraction and electromyography to evaluate affect during simulation. Int. J. Hum. Fact. Model. Simul. 2011, 2, 149–162, doi:10.1504/IJHFMS.2011.041642.
[66]  Tichon, J.G. Using presence to improve a virtual training environment. Cyberpsychol. Behav. 2007, 10, 781–787, doi:10.1089/cpb.2007.0005.
[67]  Burgess-Limerick, R.; Zupanc, C.; Wallis, G. Effect of control order on steering a simulated underground coal shuttle car. Appl. Ergon. 2013, 44, 225–229, doi:10.1016/j.apergo.2012.07.007.
[68]  Psotka, J. Immersive training systems: Virtual reality and education and training. Instr. Sci. 1995, 23, 405–431, doi:10.1007/BF00896880.
[69]  Merzouki, R.; Samantaray, A.K.; Pathak, P.M.; Bouamama, B.O. Road vehicle driving simulator. In Intelligent Mechatronic Systems; Springer: London, UK, 2013; pp. 909–933.
[70]  Cabello, E.; Conde, C.; de Diego, I.M.; Moguerza, J.M.; Redchuk, A. Combination and selection of traffic safety expert judgments for the prevention of driving risks. Sensors 2012, 12, 14711–14729, doi:10.3390/s121114711.
[71]  Eger, T.; Godwin, A.; Grenier, S. Using visibility tools in Classic JACK to assess line-of-sight issues associated with the operation of mobile equipment. Int. J. Hum. Fact. Model. Simul. 2010, 1, 406–419, doi:10.1504/IJHFMS.2010.040274.
[72]  Choi, C.B.; Park, P.; Kim, Y.H.; Susan Hallbeck, M.; Jung, M.C. Comparison of visibility measurement techniques for forklift truck design factors. Appl. Ergon. 2009, 40, 280–285, doi:10.1016/j.apergo.2008.04.012.
[73]  Chang, J.H.; Fathallah, F.A.; Pickett, W.; Miller, B.J.; Marlenga, B. Limitations in fields of vision for simulated young farm tractor operators. Ergonomics 2010, 53, 758–766.
[74]  Wang, Y.B.; Zhang, W.; Salvendy, G. A comparative study of two hazard handling training methods for novice drivers. Traffic Inj. Prev. 2010, 11, 483–491, doi:10.1080/15389588.2010.489242.
[75]  Dickey, J.P.; Eger, T.R.; Oliver, M.L. A systematic approach for studying occupational whole-body vibration: A combined field and laboratory based approach. Work 2010, 35, 15–26.
[76]  Godwin, A.A.; Eger, T.R.; Corrigan, L.; Grenier, S.G. Classic JACK modelling of driver posture and line-of-sight for operators of lift-trucks. Int. J. Hum. Fact. Model. Simul. 2010, 1, 259–270, doi:10.1504/IJHFMS.2010.036790.
[77]  ISO 10326–1: Mechanical Vibration—Laboratory Method for Evaluating Vehicle Seat Vibration—Part 1: Basic Requirements; International Standards Organization: Geneva, Switzerland, 1992.
[78]  Dickey, J.P.; Oliver, M.L.; Boileau, P.E.; Eger, T.R.; Trick, L.M. Multi-axis sinusoidal whole-body vibrations: Part I—Reliable laboratory vibration tests for measuring discomfort: How long should the vibration and rest exposures be for reliable discomfort measures? J. Low Freq. Noise Vib. Act. Control 2006, 25, 175–184, doi:10.1260/026309206779800470.
[79]  Tegner, Y.; Leven, P.; Lysholm, J. Modell f?r bed?mning av skador p? halsrygg och axelled i enlighet med arbetsskadef?rs?kringen[in Swedish]. L?kartidningen 1983, 80, 3186–3189.
[80]  Punnett, L.; Fine, L.J.; Keyserling, W.M.; Herrin, G.D.; Chaffin, D.B. Back disorders and nonneutral trunk postures of automobile assembly workers. Scand. J. Work Environ. Health 1991, 17, 337–346, doi:10.5271/sjweh.1700.
[81]  Rehn, B.; Nilsson, T.; Olofsson, B.; Lundstrom, R. Whole-body vibration exposure and non-neutral neck postures during occupational use of all-terrain vehicles. Ann. Occup. Hyg. 2005, 49, 267–275, doi:10.1093/annhyg/meh077.
[82]  Hermanns, I.; Raffler, N.; Ellegast, R.P.; Fischer, S.; Gores, B. Simultaneous field measuring method of vibration and body posture for assessment of seated occupational driving tasks. Int. J. Ind. Ergon. 2008, 38, 255–263, doi:10.1016/j.ergon.2007.05.007.
[83]  Raffler, N.; Hermanns, I.; Sayn, D.; Gores, B.; Ellegast, R.; Rissler, J. Assessing combined exposures of whole-body vibration and awkward posture—Further results from application of a simultaneous field measurement methodology. Ind. Health 2010, 48, 638–644, doi:10.2486/indhealth.MSWBVI-27.
[84]  Zhang, T.; Kaber, D.; Hsiang, S. Characterisation of mental models in a virtual reality-based multitasking scenario using measures of situation awareness. Theor. Issues Ergon. Sci. 2010, 11, 99–118, doi:10.1080/14639220903010027.
[85]  Tenney, Y.J.; Pew, R.W. Situation awareness catches on: What? So what? Now what? Rev. Hum. Fact. Ergon. 2006, 2, 1–34, doi:10.1177/1557234X0600200102.
[86]  Eger, T.; Salmoni, A.; Whissell, R. Factors influencing load-haul-dump operator line of sight in underground mining. Appl. Ergon. 2004, 35, 93–103, doi:10.1016/j.apergo.2003.12.002.
[87]  Salmoni, A.; Cann, A.; Gillin, K. Exposure to whole-body vibration and seat transmissibility in a large sample of earth scrapers. Work 2010, 35, 63–75.
[88]  De Diego, I.M.; Siordia, O.S.; Crespo, R.; Conde, C.; Cabello, E. Analysis of hands activity for automatic driving risk detection. Transp. Res. Part C Emerg. Technol. 2013, 26, 380–395, doi:10.1016/j.trc.2012.10.006.
[89]  De Oliveira, C.G.; Nadal, J. Back muscle EMG of helicopter pilots in flight: Effects of fatigue, vibration, and posture. Aviat. Space Environ. Med. 2004, 75, 317–322.
[90]  Schust, M.; Bluthner, R.; Seidel, H. Examination of perceptions (intensity, seat comfort, effort) and reaction times (brake and accelerator) during low-frequency vibration in x- or y-direction and biaxial (xy-) vibration of driver seats with activated and deactivated suspension. J. Sound Vib. 2006, 298, 606–626, doi:10.1016/j.jsv.2006.06.029.
[91]  Newell, G.S.; Mansfield, N.J. Evaluation of reaction time performance and subjective workload during whole-body vibration exposure while seated in upright and twisted postures with and without armrests. Int. J. Ind. Ergon. 2008, 38, 499–508, doi:10.1016/j.ergon.2007.08.018.
[92]  Sodhi, M.; Reimer, B.; Llamazares, I. Glance analysis of driver eye movements to evaluate distraction. Behav. Res. Methods Instrum. Comput. 2002, 34, 529–538, doi:10.3758/BF03195482.
[93]  Ljungberg, J.K.; Parmentier, F.B.R. Psychological effects of combined noise and whole-body vibration: A review and avenues for future research. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2010, 224, 1289–1302, doi:10.1243/09544070JAUTO1315.
[94]  Ahmed, O.B.; Goupillon, J.F. Predicting the ride vibration of an agricultural tractor. J. Terramech. 1997, 34, 1–11.
[95]  ISO 5008:2002(E): Agricultural Wheeled Tractors and Field Machinery—Measurement of Whole-Body Vibration of the Operator; International Standards Organization: Geneva, Switzerland, 2002.
[96]  Scarlett, A.J.; Price, J.S.; Stayner, R.M. Whole-body vibration: Evaluation of emission and exposure levels arising from agricultural tractors. J. Terramech. 2007, 44, 65–73, doi:10.1016/j.jterra.2006.01.006.
[97]  Kumar, A.; Mahajan, P.; Mohan, D.; Varghese, M. Tractor vibration severity and driver health: A study from rural India. J. Agric. Eng. Res. 2001, 80, 313–328, doi:10.1006/jaer.2001.0755.
[98]  Horberry, T. The health and safety benefits of new technologies in mining: A review and strategy for designing and deploying effective user-centred systems. Minerals 2012, 2, 417–425, doi:10.3390/min2040417.
[99]  Vagenas, N.; Scoble, M.; Baiden, G. A review of the first 25 years of mobile machine automation in underground hard rock mines. CIM Bull. 1997, 90, 57–62.
[100]  Horberry, T.; Lynas, D. Human interaction with automated mining equipment: The development of an emerging technologies database. Ergon. Aust. 2012, 8, 1–6.
[101]  Lynas, D.; Horberry, T. Human factor issues with automated mining equipment. Ergon. Open J. 2011, 4, 74–80, doi:10.2174/1875934301104010074.
[102]  Godwin, A.; Eger, T. Using virtual computer analysis to evaluate the potential use of a camera intervention on industrial machines with line-of-sight impairments. Int. J. Ind. Ergon. 2009, 39, 146–151, doi:10.1016/j.ergon.2008.04.005.
[103]  Babapour, M.; Osvalder, A.L.; Bligard, L.O. Adoption of ergonomic features in a new reach truck cabin design—A usability study. Work A J. Prev. Assess. Rehabil. 2012, 41, 1486–1492.
[104]  Genuit, K.; Fiebig, A. Application of automotive driving simulators for sound and vibration research. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2010, 224, 1279–1288, doi:10.1243/09544070JAUTO1349.
[105]  Sarter, N.B.; Woods, D.D.; Billings, C.E. Automation surprises. In Handbook of Human Factors & Ergonomics; Salvendy, G., Ed.; Wiley: New York, NY, USA, 1997; pp. 1926–1943.
[106]  Knight, J.F.; Baber, C. Neck muscle activity and perceived pain and discomfort due to variations of head load and posture. Aviat. Space Environ. Med. 2004, 75, 123–131.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413