全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Minerals  2013 

Extremely Re-Rich Molybdenite from Porphyry Cu-Mo-Au Prospects in Northeastern Greece: Mode of Occurrence, Causes of Enrichment, and Implications for Gold Exploration

DOI: 10.3390/min3020165

Keywords: molybdenite, rhenium, rheniite, porphyry, post-subduction, Greece

Full-Text   Cite this paper   Add to My Lib

Abstract:

Extremely Re-rich molybdenite occurs with pyrite in sodic–calcic, sodic–sericitic and sericitic-altered porphyritic stocks of granodioritic–tonalitic and granitic composition in the Sapes–Kirki–Esymi, Melitena and Maronia areas, northeastern Greece. Molybdenite in the Pagoni Rachi and Sapes deposits is spatially associated with rheniite, as well as with intermediate (Mo,Re)S 2 and (Re,Mo)S 2 phases, with up to 46 wt % Re. Nanodomains and/or microinclusions of rheniite may produce the observed Re enrichment in the intermediate molybdenite–rheniite phases. The extreme Re content in molybdenite and the unique presence of rheniite in porphyry-type mineralization, combined with preliminary geochemical data (Cu/Mo ratio, Au grades) may indicate that these deposits have affinities with Cu–Au deposits, and should be considered potential targets for gold mineralization in the porphyry environment. In the post-subduction tectonic regime of northern Greece, the extreme Re and Te enrichments in the magmatic-hydrothermal systems over a large areal extent are attributed to an anomalous source (e.g., chemical inhomogenities in the mantle-wedge triggered magmatism), although local scale processes cannot be underestimated.

References

[1]  Newberry, R.J.J. Polytypism in molybdenite (I): A non-equilibrium, impurity-induced phenomenon. Am. Mineral. 1979, 64, 758–767.
[2]  Melfos, V.; Voudouris, P.; Arikas, K.; Vavelidis, M. Rhenium-rich molybdenites in Thracian Μο±Cu porphyry occurrences, NE Greece [in Greek]. Bull. Geol. Soc. Greece 2001, 34, 1015–1022.
[3]  Sinclair, D.W.; Jonasson, I.R.; Kirkham, R.V.; Soregaroli, A.E. Rhenium and Other Platinum-Group Metals in Porphyry Deposits; Open File 6181; Geological Survey of Canada: Ottawa, Canada, 2009.
[4]  Ekstr?m, M.; H?lenius, U. A new rhenium-rich sulfide from two Swedish localities. N. Jb. Miner. Mnh. 1982, 1, 6–10.
[5]  Mitchell, R.H.; Laflamme, J.H.; Cabri, L.J. Rhenium sulfide from the Coldwell Complex, northwester Ontario. Mineral. Mag. 1989, 53, 635–637.
[6]  Tarkian, M.; Housley, R.M.; Volborth, R.M.; Greis, O.; Moh, G. Unnamed Re-Mo-Cu sulfide from the Stillwater Complex, and crystal chemistry of its synthetic equivalent spinel type (Cu, Fe)(Re, Mo)4S8. Eur. J. Mineral. 1991, 3, 977–982.
[7]  Barkov, A.Y.; Lednev, A.I. A rhenium-molybenum-copper sulfide from the Lukkulaisvarra layered intrusion, northern Karelia, Russia. Eur. J. Mineral. 1993, 6, 1227–1233.
[8]  Kojonen, K.K.; Roberts, A.C.; Isomaki, O.P.; Knauff, V.V.; Johanson, B.; Pakkanen, L. Tarkianite, (Cu,Fe)(Re,Mo)4S8, a new mineral species from the Hitura mine, Nivala, Finland. Can. Mineral. 2004, 42, 539–544, doi:10.2113/gscanmin.42.2.539.
[9]  Bobrov, A.; Hurskiy, D.; Merkushyn, I.; Voloshyn, O.; Stepanyuk, L.; Lysenko, O.; Goshovksi, S. The First Occurrence of Native Rhenium in Natural Geological Systems. In Proceedings of 33rd International Geological Congress, Oslo, Norway, 6–14 August 2008.
[10]  Poplavko, E.M.; Marchakova, I.D.; Zak, S.Sh. A rhenium mineral in the ores of the Dzhezkazgan locality [in Russian]. Dokl. Acad. Nauk. USSR 1962, 146, 433–436.
[11]  Lavrov, O.B.; Kuleshevich, L.V. The first finds of rhenium minerals in Karelia. Dokl. Earth Sci. 2010, 432, 598–601, doi:10.1134/S1028334X10050107.
[12]  Korzhinsky, M.A.; Tkachenko, S.I.; Shumulovich, K.I.; Taran, Y.A.; Steinberg, G.S. Discovery of a pure rhenium mineral at Kudriavy volcano. Nature 1994, 369, 51–52, doi:10.1038/369051a0.
[13]  Voudouris, P.C.; Melfos, V.; Spry, P.G.; Bindi, L.; Kartal, T.; Arikas, K.; Moritz, R.; Ortelli, M. Rhenium-rich molybdenite and rheniite (ReS2) in the Pagoni Rachi-Kirki Mo-Cu-Te-Ag-Au deposit, Northern Greece: Implications for the rhenium geochemistry of porphyry style Cu-Mo and Mo mineralization. Can. Mineral. 2009, 47, 1013–1036.
[14]  Voudouris, P.; Melfos, V.; Moritz, R.; Spry, P.G.; Ortelli, M.; Kartal, T. Molybdenite Occurrences in Greece: Mineralogy, Geochemistry and Rhenium Content. In Scientific Annals of the School of Geology AUTH, Proceedings of the XIX Congress of the Carpathian-Balkan Geological Association, Thessaloniki, Greece, 23–26 September 2010; pp. 369–378.
[15]  Voudouris, P.C.; Melfos, V.; Spry, P.G.; Kartal, T.; Schleicher, H.; Moritz, R.; Ortelli, M. The Pagoni Rachi/Kirki Cu-Mo±Re±Au deposit, northern Greece: Mineralogical and fluid inclusion constrains on the evolution of a telescoped porphyry-epithermal system. Can. Mineral. 2013, 51, 411–442.
[16]  Arikas, K. A porphyry Mo-Cu occurence near Kirki (western Thrace, Greece). N. Jb. Miner. Abh. 1979, 137, 74–82.
[17]  Filippidis, A.; Vavelidis, M.; Michailidis, K.; Evangelou, E. Re-rich and Re-poor molybdenite in the Melitena porphyritic intrusion, Rhodope massif. Fortschr. Mineral. 1986, 64, 47.
[18]  Michailidis, K.; Filippidis, A.; Kassoli-Fournaraki, A. Polytypism and rhenium-contents of molybdenites from two Mo-deposits in northern Greece. In Current Research in Geology Applied to Ore Deposits, Proceedings of the second biennial SGA meeting, Granada, Spain, 9–11 September 1993; Fenoll Hach-Ali, P., Torres-Ruiz, J., Gervilla, F., Eds.; University of Granada: Granada, Spain, 1993; pp. 641–644.
[19]  Berzina, A.N.; Sotnikov, V.I.; Economou-Eliopoulos, M.; Eliopoulos, D.G. Distribution of rhenium in molybdenite from porphyry Cu-Mo and Mo-Cu deposits of Russia (Siberia) and Mongolia. Ore Geol. Rev. 2005, 26, 91–113, doi:10.1016/j.oregeorev.2004.12.002.
[20]  Newberry, R.J.J. Polytypism in molybdenite (II): Relationships between polytypism, ore deposition/alteration stages and rhenium contents. Am. Mineral. 1979, 64, 768–775.
[21]  Fleisher, M. The geochemistry of rhenium with special reference to its occurrence in molybdenite. Econ. Geol. 1959, 54, 1406–1413, doi:10.2113/gsecongeo.54.8.1406.
[22]  Terada, K.; Osaki, S.; Ishihara, S.; Kiba, T. Distribution of rhenium in molybdenites from Japan. Geochem. J. 1971, 4, 123–141, doi:10.2343/geochemj.4.123.
[23]  Stein, H.J.; Marke, R.J.; Morgan, J.W.; Hannah, J.L.; Scherstén, A. The remarkable Re-Os chronometer in molybdenite: how and why it works. Terra Nova 2001, 13, 479–486, doi:10.1046/j.1365-3121.2001.00395.x.
[24]  Brown, M.; Lazo, F.; Carter, P.; Goss, B.; Kirwin, D. The Geology and Discovery of the Merlin Mo-Re Zone of the Mount Dore Deposit, Mount Isa Inlier, NW Queensland, Australia. SGA News, 27, June, 2010, 9–15.
[25]  Lycopodium Minerals QLD Pty Ltd. Merlin Molybdenum Rhenium Project: Feasibility Study Northwest Queensland, Australia, Available online: http://www.ivanhoeaustralia.com/i/pdf/NI43-101_Merlin_Technical_Report.pdf (accessed on 16 April 2012).
[26]  Jolivet, L.; Brun, J.P. Cenozoic geodynamic evolution of the Aegean region. Int. J. Earth Sci. 2010, 99, 109–138, doi:10.1007/s00531-008-0366-4.
[27]  Jolivet, L.; Faccenna, C.; Huet, B.; Labrousse, L.; Le Pourhiet, L.; Lacombe, O.; Lecomte, E.; Burov, E.; Denèle, Y.; Brun, J.P.; et al. Aegean tectonics: Strain localization, slab tearing and trench retreat. Tectonophysics 2012, doi:10.1016/j.tecto.2012.06.011.
[28]  Ring, U.; Glodny, J.; Will, T.; Thomson, S. The Hellenic subduction system: high-pressure metamorphism, exhumation, normal faulting, and large-scale extension. Ann. Rev. Earth Planet. Sci. 2010, 38, 45–76, doi:10.1146/annurev.earth.050708.170910.
[29]  Van Hinsbergen, D.J.J.; Hafkenscheid, E.; Spakman, W.; Meulenkamp, J.E.; Wortel, R. Nappe stacking resulting from subduction of oceanic and continental lithosphere below Greece. Geology 2005, 33, 325–328, doi:10.1130/G20878.1.
[30]  Brun, J.P.; Faccenna, C. Exhumation of high-pressure rocks driven by slab roll-back. Earth Planet. Sci. Lett. 2008, 272, 1–7, doi:10.1016/j.epsl.2008.02.038.
[31]  Marchev, P.; Kaiser-Rohrmeier, M.; Heinrich, Ch.; Ovtcharova, M.; von Quadt, A.; Raicheva, R. Hydrothermal ore deposits related to post-orogenic extentional magmatism and core complex formation: the Rhodope Massif of Bulgaria and Greece. Ore Geol. Rev. 2005, 27, 53–89, doi:10.1016/j.oregeorev.2005.07.027.
[32]  Wüthrich, E.D. Low Temperature Thermochronology of the Northern Aegean Rhodope Massif. Ph.D. Thesis, ETH Zürich, Zürich, Switzerland, 2009.
[33]  Foster, M.; Lister, G. Core-complex-related extension of the Aegean lithosphere initiated at the Eocene-Oligocene transition. J. Geophys. Res. Solid Earth 2009, 114, B02401:1–B02401:36, doi:10.1029/2007JB005382.
[34]  Burg, J.P. Rhodope: From Mesozoic convergence to Cenozoic extension. Review of petro-structural data in the geochronological frame. J. Virtual Explor. 2012, 42, Paper 1.
[35]  Pe-Piper, G.; Piper, D.J.W. Unique features of the Cenozoic igneous rocks of Greece. In Postcollisional Tectonics and Magmatism in the Mediterranean Region and Asia; Dilek, Y., Pavlides, S., Eds.; Geological Society of America Special Paper 409; The Geological Society of America: Boulder, CO, USA, 2006; pp. 259–282.
[36]  Innocenti, F.; Kolios, N.; Manetti, O.; Mazzuoli, R.; Peccerillo, G.; Rita, F.; Villari, L. Evolution and geodynamic significance of the Tertiary orogenic volcanism in northeastern Greece. Bull. Vulcanol. 1984, 47, 25–37, doi:10.1007/BF01960538.
[37]  Perugini, D.; Poli, G.; Christofides, G.; Eeftheriadis, G.; Koroneos, A.; Soldatos, T. Mantle-derived and crustal melts dichotomy in northern Greece: spatiotemporal and geodynamic implications. Geol. J. 2004, 39, 63–80, doi:10.1002/gj.944.
[38]  Fytikas, M.; Innocenti, F.; Manetti, O.; Mazzuoli, R.; Peccerillo, G.; Villari, L. Tertiary to Quaternary evolution of volcanism in the Aegean region. In The Geological Evolution of the Eastern Mediterranean; Dixon, J.E., Robertson, A.H.F., Eds.; Geological Society Special Publications No. 17; The Geological Society: London, UK, 1984; pp. 687–699.
[39]  Melfos, V.; Vavelidis, M.; Christofides, G.; Seidel, E. Origin and evolution of the Tertiary Maronia porphyry copper-molybdenum deposit, Thrace, Greece. Miner. Depos. 2002, 37, 648–668, doi:10.1007/s00126-002-0277-4.
[40]  Moritz, R.; Márton, I.; Ortelli, M.; Marchev, P.; Voudouris, P.; Bonev, N.; Spikings, R.; Cosca, M. A Review of Age Constraints of Epithermal Precious and Base Metal Deposits of the Tertiary Eastern Rhodopes: Coincidence with Late Eocene-Early Oligocene Tectonic Plate Reorganization along the Tethys. In Scientific Annals of the School of Geology AUTH, Proceedings of the 19th Congress of the Carpathian-Balkan Geological Association, Thessaloniki, Greece, 23–26 September 2010; pp. 351–358.
[41]  Arvanitidis, N.D.; Constantinides, D. Base and precious metal sulfide mineralization of the Greek Rhodope Massif. Geol. Rhodop. 1989, 1, 298–305.
[42]  Arikas, K.; Voudouris, P. Hydrothermal alterations and mineralizations of magmatic rocks in the southern Rhodope Massif. Acta Volcan. 1998, 10, 353–365.
[43]  Voudouris, P. Comparative mineralogical study of Tertiary Te-rich epithermal and porphyry systems in northeastern Greece. Mineral. Petrol. 2006, 87, 241–275, doi:10.1007/s00710-006-0131-y.
[44]  Márton, I.; Moritz, R.; Spikings, R. Application of low-temperature thermochronology to hydrothermal ore deposits: Formation, preservation and exhumation of epithermal gold systems from the Eastern Rhodopes, Bulgaria. Tectonophysics 2010, 483, 240–254, doi:10.1016/j.tecto.2009.10.020.
[45]  Eliopoulos, D.; Kilias, S.P. Marble-hosted submicroscopic gold mineralization at Asimotrypes area, Mount Pangeon, southern Rhodope Core Complex, Greece. Econ. Geol. 2011, 106, 751–780, doi:10.2113/econgeo.106.5.751.
[46]  Voudouris, P.; Tarkian, M.; Arikas, K. Mineralogy of telluride-bearing epithermal ores in Kassiteres-Sappes area, western Thrace, Greece. Mineral. Petrol. 2006, 87, 31–52, doi:10.1007/s00710-005-0119-z.
[47]  Ortelli, M. Tertiary Porphyry and Epithermal Association of the Sapes/Kassiteres District, Eastern Rhodopes, Greece. Master’s Thesis, University of Geneva, Geneva, Switzerland, October 2009.
[48]  Ortelli, M.; Moritz, R.; Voudouris, P.; Spangenberg, J. Tertiary porphyry and epithermal association of the Sapes-Kassiteres district, eastern Rhodopes, Greece. In Smart Science for Exploration and Mining, Proceedings of the 10th Biennial SGA Meeting, Townsville, Australia, 17–20 August 2009; Williams, P.J., Ed.; Economic Geology Research Unit, James Cook University: Douglas, Australia, 2009; pp. 536–538.
[49]  Papadopoulou, L.; Christofides, G.; Koroneos, A.; Br?cker, M.; Soldatos, T.; Eleftheriadis, G. Evolution and origin of the Maronia pluton, Thrace, Greece. Bull. Geol. Soc. Greece 2004, 36, 568–577.
[50]  Le Bas, M.J.; Le Maitre, R.W.; Streckeisen, A.; Zenettin, B. A chemical classification of volcanic rocks based on the total alkali-silica diagram. J. Petrol. 1986, 27, 745–750, doi:10.1093/petrology/27.3.745.
[51]  Irvine, T.N.; Baragar, W.R.A. A guide to the chemical classification of the common rocks. Can. J. Earth Sci. 1971, 8, 523–548, doi:10.1139/e71-055.
[52]  Streckeisen, A.; Le Maitre, R.W. A chemical approximation to the modal QAPF classification of the igneous rocks. N. Jb. Miner. Abh. 1979, 136, 169–206.
[53]  Eleftheriadis, G. Petrogenesis of the Oligocene volcanics from the Central Rhodope massif (N. Greece). Eur. J. Mineral. 1995, 7, 1169–1182.
[54]  Voudouris, P.; Melfos, V. Aluminum-phosphate-sulfate (APS) minerals in the sericitic-advanced argillic alteration zone of the Melitena porphyry-epithermal Mo-Cu-±Au±Re prospect, western Thrace, Greece. N. Jb. Mineral. Abh. 2012, 190, 11–27.
[55]  Gustafson, L.B.; Hunt, J.P. The porphyry copper deposit at El Salvador, Chile. Econ. Geol. 1975, 70, 857–912, doi:10.2113/gsecongeo.70.5.857.
[56]  Dilles, J.H.; Einaudi, M.T. Wall-rock alteration and hydrothermal flow paths about the Ann-Mason porphyry copper deposit, Nevada—A 6-km vertical reconstruction. Econ. Geol. 1992, 87, 1963–2001, doi:10.2113/gsecongeo.87.8.1963.
[57]  Muntean, J.L.; Einaudi, M.T. Porphyry-epithermal transition: Maricunga belt, Northern Chile. Econ. Geol. 2001, 96, 743–772, doi:10.2113/gsecongeo.96.4.743.
[58]  Seedorff, E.; Dilles, J.H.; Proffett, J.M.; Einaudi, M.T.; Zurcher, L.; Stavast, W.J.A.; Johnson, D.A.; Barton, M.D. Porphyry deposits: Characteristics and origin of hypogene features. Econ. Geol. 2005, 100, 251–298.
[59]  Arancibia, O.N.; Clark, A.H. Early magnetite-amphibole-plagioclase alteration-mineralization in the Island Copper porphyry copper-gold-molybdenum deposit, British Columbia. Econ. Geol. 1996, 91, 402–438, doi:10.2113/gsecongeo.91.2.402.
[60]  Katirtzoglou, C. The Metallogenesis of the Tertiary Sulfide Mineralization of the Essymi Region, Evros County. Ph.D. Thesis, University of Athens, Athens, Greece, 1986.
[61]  Voudouris, P.; Alfieris, D. New porphyry-Cu±Mo occurrences in northeastern Aegean/Greece: Ore mineralogy and transition to epithermal environment. In Mineral Deposit Research: Meeting the Global Challenge, Proceedings of the 8th Biennial SGA Meeting, Beijing, China, 18–21 August 2005; Mao, J., Bierlein, F.P., Eds.; Springer: Berlin, Germany, 2005; pp. 473–476.
[62]  Fornadel, A.P.; Voudouris, P.; Spry, P.G.; Melfos, V. Mineralogical, stable isotope and fluid inclusion studies of spatially related porphyry Cu-Mo and epithermal Au-Te mineralization, Fakos Peninsula, Limnos Island, Greece. Mineral. Petrol. 2012, 105, 85–111, doi:10.1007/s00710-012-0196-8.
[63]  Todorov, T. Genetic types and metal-formation of molybdenum mineralization in Bulgaria. J. Southeast Asian Earth Sci. 1973, 8, 307–311.
[64]  Tarkian, M.; Stribny, B. Platinium group elements in porphyry copper deposits: A reconnaissance study. Mineral. Petrol. 1999, 65, 161–183, doi:10.1007/BF01161959.
[65]  Strashimirov, S.; Petrunov, R.; Kanazirski, M. Porphyry-copper mineralization in the central Srednogorie zone, Bulgaria. Miner. Depos. 2002, 37, 587–598, doi:10.1007/s00126-002-0275-6.
[66]  Tockmakchieva, M. Valuable minor components in the composition of porphyry copper deposits. In Annual Report of the University of Mining and Geology “St. Ivan Rilski” Volume 45, Part I, Geology, Sofia; University of Mining and Geology “St. Ivan Rilski”: Sofia, Bulgaria, 2002; pp. 71–75.
[67]  Todorov, T.; Staikov, M. Rhenium content in molybdenite from ore mineralizations in Bulgaria. Geol. Balc. 1985, 15, 45–58.
[68]  Armstrong, R.; Kozelj, D.; Herrington, R. The Majdanpek Cu-Au deposit of eastern Serbia, a review. In Super Porphyry Copper and Gold Deposits: A Global Perspective; Porter, T.M., Ed.; PGC Publishing: Adelaide, Australia, 2005; Volume 2, pp. 453–466.
[69]  Pavicevic, M.K.; Krajnovic, D.; Cvetcovic, L.; Grzetic, I. The Trace Elements in Chalcopyrite and Pyrite in the Bor Copper Deposits. In Proceedings of XV Congress of the Carpatho-Balcan Geological Association, Athens, Greece, 17–20 September 1995; pp. 804–807.
[70]  Wanhainen, C.; Billstr?m, K.; Martinsson, O. Copper and gold distribution at the Aitik deposit, G?llivare area, northern Sweden. Appl. Earth Sci. 2003, 112, 260–267, doi:10.1179/037174503225011289.
[71]  Nigatu, W. Rhenium in the Aitik Cu-Au-Ag-(Mo) Deposit. Master’s Thesis, Lulea University of Technology, Lulea, Sweden, December 2011.
[72]  Sotnikov, V.I.; Berzina, A.N.; Economou-Eliopoulos, M.; Eliopoulos, D.G. Palladium, platinum and gold distribution in porphyry Cu±Mo deposits of Russia and Mongolia. Ore Geol. Rev. 2001, 18, 95–111, doi:10.1016/S0169-1368(01)00018-X.
[73]  Singer, D.A.; Berger, V.I.; Moring, B.B. Porphyry Copper Deposits of the World: Database and Grade and Tonnage Models; Open-File Report 2008-1155; U.S. Geological Survey: Reston, VA, USA, 2008. Available online: http://pubs.usgs.gov/of/2008/1155/ (accessed on 6 June 2008).
[74]  Aminzadeh, B.; Shahabpour, J.; Maghami, M. Variation of rhenium contents in molybdenites from the Sar Cheshmeh porphyry Cu-Mo deposit in Iran. Res. Geol. 2011, 61, 290–295, doi:10.1111/j.1751-3928.2011.00165.x.
[75]  Gilles, D.L.; Schilling, J.H. Variation in Rhenium Content of Molybdenite. In Proceedings of the 24th International Geological Congress Section 10, Montreal, Canada, 1972; pp. 145–152.
[76]  Tarkian, M.; Koopmann, G. Platinum-group minerals in the Santo Thomas II (Philex), porphyry copper-gold deposit Luzon Island, Philippines. Miner. Depos. 1995, 30, 39–47.
[77]  Marinov, D. Re-Os molybdenite geochronology from Michiquillay and Galeno porphyry copper deposits, Cajamarca, Perú. In Let’s Talk Ore Deposits, Proceedings of the 11th Biennial SGA Meeting, Antofagasta, Chile, 26–29 September 2011; Barra, F., Reich, M., Campos, E., Tornos, F., Eds.; Universidad Católica del Norte: Antofagasta, Chile, 2011.
[78]  Drábek, M.; Rieder, M.; B?hmová, V. The Re-Mo-S system: New data on phase relations between 400 and 1200 °C. Eur. J. Mineral. 2010, 22, 479–484, doi:10.1127/0935-1221/2010/0022-2044.
[79]  Kosler, J.A.; Simonetti, A.; Sylvester, P.J.; Cox, R.A.; Tubrett, M.N.; Wilton, D.H.C. Laser ablation ICP-MS measurements of Re/Os in molybdenite and implications for Re-Os geochronology. Can. Mineral. 2003, 41, 307–320, doi:10.2113/gscanmin.41.2.307.
[80]  Selby, D.; Creaser, R.A. Re-Os geochronology and systematics in molybdenite from the Endako porphyry molybdenum deposit, British Columbia, Canada. Econ. Geol. 2001, 96, 197–204, doi:10.2113/gsecongeo.96.1.197.
[81]  Selby, D.; Creaser, R.A. Macroscale NTIMS and mircoscale LA-MC-ICP-MS Re-Os isotopic analysis of molybdenite: Testing spatial restriction for reliable Re-Os age determinations, and implications for the decoupling of Re and Os within molybdenite. Geochim. Cosmochim. Acta 2004, 68, 3897–3908, doi:10.1016/j.gca.2004.03.022.
[82]  Grabezhev, A.I.; Shagalov, E.S. Rhenium distribution in molybdenite: Results of microprobe scanning (copper porphyry deposits, the Urals). Dokl. Earth Sci. 2010, 431, 351–355, doi:10.1134/S1028334X10030189.
[83]  Mao, J.; Zhang, Z.; Zhang, Z.; Du, A. Re-Os isotopic dating of molybdenites in the Xiaoliugou W(Mo) deposit in the northern Qilian Mountains and its geological significance. Geochim. Cosmochim. Acta 1999, 63, 1815–1818, doi:10.1016/S0016-7037(99)00165-9.
[84]  Blevin, P.L. The primacy of magma compositions in determining the Re and W contents of molybdenite. In Proceedings of the 24th International Applied Geochemistry Symposium, Fredericton, Canada, 1 June to 4 June 2009; pp. 119–122.
[85]  Selby, D.; Creaser, R.A.; Hart, C.J.R.; Rombach, C.S.; Thompson, J.F.H.; Smith, T.; Bakke, A.; Goldfarb, R. Absolute timing of sulfide and gold mineralization: A comparison of Re-Os molybdenite and Ar-Ar mica methods from the Tintina Gold Belt, Alaska. Geology 2002, 30, 791–794, doi:10.1130/0091-7613(2002)030<0791:ATOSAG>2.0.CO;2.
[86]  Selby, D.; Creaser, R.A.; Heaman, L.M.; Hart, C.J.R. Re-Os and U-Pb geochronology of the Clear Creek, Dublin Gulch, and Mactung deposits, Tombstone Gold Belt, Yukon, Canada: absolute timing relationships between plutonism and mineralization. Can. J. Earth Sci. 2003, 40, 1839–1852, doi:10.1139/e03-077.
[87]  Jones, C.E.; Tarney, J.; Baker, J.H.; Gerouki, F. Tertiary granitoids of Rhodope, northern Greece: Magmatism related to extensional collapse of the Hellenic Orogen? Tectonophysics 1992, 210, 295–314, doi:10.1016/0040-1951(92)90327-3.
[88]  Christofides, G.; Soldatos, T.; Elefthertiadis, G.; Koroneos, A. Chemical and isotopic evidence for source contamination and crustal assimilation in the Hellenic Rhodope plutonic rocks. Acta Volcanol. 1998, 10, 305–318.
[89]  Altherr, R.; Siebel, W. I-type plutonism in a continental back-arc setting: Miocene granitoids and monzonites from the central Aegean Sea, Greece. Contrib. Mineral. Petrol. 2002, 143, 397–415, doi:10.1007/s00410-002-0352-y.
[90]  Skarpelis, N.; Tsikouras, B.; Pe-Piper, G. The Miocene igneous rocks in the Basal Unit of Lavrion (SE Attica, Greece): Petrology and geodynamic implications. Geol. Mag. 2008, 145, 1–15.
[91]  Christofides, G.; Soldatos, T.; Koroneos, A. Geochemistry and evolution of the Fanos granite, N. Greece. Mineral. Petrol. 1990, 43, 49–63, doi:10.1007/BF01164221.
[92]  Iglseder, C.; Grasemann, B.; Schneider, D.A.; Petrakakis, K.; Miller, C.; Kl?tzlid, U.S.; Th?ni, M.; Zámolyi, A.; Rambousek, C. I and S-type plutonism on Seriphos (W-Cyclades, Greece). Tectonophysics 2009, 473, 69–83, doi:10.1016/j.tecto.2008.09.021.
[93]  Xiong, Y.; Wood, S.A. Experimental determination of the solubility of ReS2 and the Re-ReO2 buffer assemblage and transport of rhenium under supercritical conditions. Geochem. Trans. 2002, 3, 1–10, doi:10.1186/1467-4866-3-1.
[94]  Pe-Piper, G.; Piper, D.J. The Igneous Rocks of Greece: The Anatomy of an Orogen; Pe-Piper, G., Piper, D.J.W., Eds.; Beitr?ge zur regionalen Geologie der Erde 30; Gebruder Borntraeger: Berlin, Germany, 2002.
[95]  Del Moro, A.; Innocenti, F.; Kyriakopoulos, C.; Manetti, P.; Papadopoulos, P. Tertiary granitoids from Thrace (Northern Greece): Sr isotopic and petrochemical data. N. Jb. Miner. Abh. 1988, 159, 113–135.
[96]  Pe-Piper, G.; Piper, D.J.; Koukouvelas, I.; Dolansky, L.M.; Kokkalas, S. Postorogenic shoshonitic rocks and their origin by melting underplated basalts: The Miocene of Limnos, Greece. Geol. Soc. Am. Bull. 2009, 121, 39–54.
[97]  Kroll, T.; Muller, D.; Seifert, T.; Herzig, P.M.; Schneider, A. Petrology and geochemistry of the shoshonite-hosted Skouries porphyry Cu-Au deposit, Chalkidiki, Greece. Miner. Depos. 2002, 37, 137–144, doi:10.1007/s00126-001-0235-6.
[98]  Richards, J.P. Postsubduction porphyry Cu-Au and epithermal Au deposits: Products of remelting of subduction-modified lithosphere. Geology 2009, 37, 247–250, doi:10.1130/G25451A.1.
[99]  Richards, J.P. Magmatic to hydrothermal metal fluxes in convergent and collided margins. Ore Geol. Rev. 2011, 40, 1–26, doi:10.1016/j.oregeorev.2011.05.006.
[100]  Li, N.; Chen, Y.J.; Santosh, M.; Yao, J.M.; Sun, Y.L.; Li, J. The 1.85 Ga Mo mineralization in the Xiong’er Terrane, China: Implications for metallogeny associated with assembly of the Columbia supercontinent. Precambrian Res. 2011, 186, 220–232, doi:10.1016/j.precamres.2011.01.019.
[101]  Jensen, E.P.; Barton, M.D. Gold deposits related to alkaline magmatism. Rev. Econ. Geol. 2000, 13, 279–314.
[102]  Sun, W.; Arculus, R.J.; Bennett, V.C.; Eggins, S.M.; Binns, R.A. Evidence for rhenium enrichment in the mantle wedge from submarine arc like volcanic glasses (Papua New Guinea). Geology 2003, 31, 845–848, doi:10.1130/G19832.1.
[103]  Tessalina, S.G.; Yudovskaya, M.A.; Chaplygin, I.V.; Birck, J.-L.; Capmas, F. Sources of unique rhenium enrichment in fumaroles and sulphides at Kudryavy volcano. Geochim. Cosmochim. Acta 2008, 72, 889–909, doi:10.1016/j.gca.2007.11.015.
[104]  Ciobanu, C.L.; Cook, N.J.; Damian, G.; Damian, F. Telluride and sulfosalt associations at Sǎcǎr?mb. In Au-Ag-Telluride Deposits of the Golden Quadrilateral, Apuseni Mts., Romania; Cook, N.J., Ciobanu, C.L., Eds.; International Field Workshop of IGCP Project 486; IAGOD Guidebook Series 12; Romanian Geological Survey: Alba Iulia, Romania, 2004; pp. 145–186.
[105]  Cook, N.J.; Ciobanu, C.L.; Damian, G.; Damian, F. Tellurides and sulfosalts from deposits in the Golden Quadrilateral. In Au-Ag-Telluride Deposits of the Golden Quadrilateral, Apuseni Mts., Romania; Cook, N.J., Ciobanu, C.L., Eds.; International Field Workshop of IGCP Project 486; IAGOD Guidebook Series 12; Romanian Geological Survey: Alba Iulia, Romania, 2004; pp. 111–144.
[106]  Cook, N.J.; Ciobanu, C.L. Bismuth tellurides and sulfosalts from the Larga hydrothermal system, Metaliferi Mts, Romania: Paragenesis and genetic significance. Mineral. Mag. 2004, 68, 301–321, doi:10.1180/0026461046820188.
[107]  Harris, C.R.; Pettke, T.; Heinrich, C.A.; Rosu, E.; Woodland, S.; Fry, B. Tethyan mantle metasomatism creates subduction geochemical signatures in non-arc Cu-Au-Te mineralizing magmas, Apuseni Mountains (Romania). Earth Planet. Sci. Lett. 2013, 366, 122–136, doi:10.1016/j.epsl.2013.01.035.
[108]  Tarkian, M.; Eliopoulos, D.G.; Economou-Eliopoulos, M. Mineralogy of precious metals in the Skouries porphyry copper deposit, Northern Greece. N. Jb. Miner. Abh. 1991, 12, 529–537.
[109]  Spry, P.G.; Foster, F.; Truckle, J.S.; Chadwick, T.H. The mineralogy of the Golden Sunlight gold-silver telluride deposit, Whitehall, Montana, U.S.A. Mineral. Petrol. 1997, 59, 143–164, doi:10.1007/BF01161857.
[110]  LeFort, D.; Hanley, J.; Guillong, M. Subepithermal Au-Pd mineralization associated with an alkalic porphyry Cu-Au deposit, Mount Milligan, Quesnel Terrane, British Columbia, Canada. Econ. Geol. 2011, 106, 781–808, doi:10.2113/econgeo.106.5.781.
[111]  Zimmerman, A.; Stein, H.J.; Hannah, J.L.; Kozelj, D.; Bogdanov, K.; Berza, T. Tectonic configuration of the Apuseni-Banat-Timrok-Srednogorie belt, Balkans-South Carpathians, constrained by high precision Re-Os. Miner. Depos. 2008, 43, 1–21, doi:10.1007/s00126-007-0149-z.
[112]  Leng, C.-B.; Zhang, X.-C.; Hu, R.-Z.; Wang, S.-X.; Zhong, H.; Wang, W.-Q.; Bi, X.-W. Zircon U-Pb and molybdenite Re-Os Geochronology and Sr-Nd-Pb-Hf isotopic constraints on the genesis of the Xuejiping porphyry copper deposit in Zhongdian, Northwest Yunnan, China. J. Asian Earth Sci. 2012, 60, 31–48, doi:10.1016/j.jseaes.2012.07.019.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133