全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Cascadable Current-Mode First-Order and Second-Order Multifunction Filters Employing Grounded Capacitors

DOI: 10.1155/2012/261075

Full-Text   Cite this paper   Add to My Lib

Abstract:

A configuration for realizing low input and high output impedances current-mode multifunction filters using multiple output second-generation current conveyors (MOCCIIs) is presented. From the proposed circuit configuration, first-order allpass, highpass, lowpass and second-order allpass, notch, bandpass filters can be obtained. The simulation results confirm the theoretical analysis. 1. Introduction Current conveyors (CCs) are receiving much attention for their potential advantages such as inherent wider signal bandwidths, simpler circuitry and larger dynamic range [1, 2]. Current-mode active filters with low input impedance and high output impedance are of great interest because they can be directly connected in cascade to implement higher order filters [3, 4]. Several current-mode first-order allpass filters using various active components have been reported. Some circuits use two second-generation current conveyors (CCIIs) to realize such a first-order allpass filter function with high output impedance [5]. However, the number of passive components they used are not canonical. Some first-order circuits use one active component [6, 7]. However, their input impedances are not low. Some first-order circuits use one active element, one capacitor, and one resistor [8–10]. However, these circuits have not the advantage of low input impedance and the capacitors they used are not grounded. In 2007, Metin et al. [11] propose a current-mode first-order allpass filter using two CCIIs, two grounded resistors and one grounded capacitor with low input and high output impedances. In 2009, Lahiri and Chowdhury [12] proposed a current-mode first-order allpass filter using one current differencing transconductance amplifier (CDTA) and one grounded capacitor with low input and high output impedances. As the function of CDTA can also be replaced by two CCII and one operational transconductance amplifier (OTA) [12], if the structure of [12] is constructed by CCIIs and OTA, it requires two CCIIs and one OTA. In this paper, a new current-mode circuit configuration with low input and high output impedances uses two multiple output second-generation current conveyors (MOCCIIs) is presented. The first-order allpass, highpass, and lowpass filters can be obtained from the proposed circuit configuration. Several current-mode universal biquadratic filters with single-input and multioutput were presented in the literature [13–15]. However, the input impedances of the circuits in [13, 14] are high. Moreover, at least three CCIIs are required in [14, 15]. Several current-mode

References

[1]  C. Toumazou, F. J. Lidgey, and D. G. Haigh, Analog IC Design: The Current-Mode Approach, Peter Peregrinus, London, UK, 1990.
[2]  J. W. Horng, “Voltage/current-mode universal biquadratic filter using single CCII+,” Indian Journal of Pure and Applied Physics, vol. 48, no. 10, pp. 749–756, 2010.
[3]  A. M. Soliman, “Current mode universal filter,” Electronics Letters, vol. 31, no. 17, pp. 1420–1421, 1995.
[4]  J. W. Horng, “Current-mode and transimpedance-mode universal biquadratic filter using multiple outputs cciis,” Indian Journal of Engineering and Materials Sciences, vol. 17, no. 3, pp. 169–174, 2010.
[5]  J. W. Horng, C. L. Hou, C. M. Chang, W. Y. Chung, H. L. Liu, and C. T. Lin, “High output impedance current-mode first-order allpass networks with four grounded components and two CCIIs,” International Journal of Electronics, vol. 93, no. 9, pp. 613–621, 2006.
[6]  S. Minaei and M. A. Ibrahim, “General configuration for realizing current-mode first-order all-pass filter using DVCC,” International Journal of Electronics, vol. 92, no. 6, pp. 347–356, 2005.
[7]  S. Maheshwari, “Novel cascadable current-mode first order all-pass sections,” International Journal of Electronics, vol. 94, no. 11, pp. 995–1003, 2007.
[8]  A. Toker, S. Ozoguz, O. Cicekoglu, and C. Acar, “Current-mode all-pass filters using current differencing buffered amplifier and a new high-Q bandpass filter configuration,” IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 47, no. 9, pp. 949–954, 2000.
[9]  S. Kilin? and U. ?am, “Current-mode first-order allpass filter employing single current operational amplifier,” Analog Integrated Circuits and Signal Processing, vol. 41, no. 1, pp. 47–53, 2004.
[10]  S. Maheshwari, “A new current-mode current-controlled all-pass section,” Journal of Circuits, Systems and Computers, vol. 16, no. 2, pp. 181–189, 2007.
[11]  B. Metin, K. Pal, and O. Cicekoglu, “All-pass filter for rich cascadability options easy IC implementation and tunability,” International Journal of Electronics, vol. 94, no. 11, pp. 1037–1045, 2007.
[12]  A. Lahiri and A. Chowdhury, “A novel first-order current-mode all-pass filter using CDTA,” Radioengineering, vol. 18, no. 3, pp. 300–305, 2009.
[13]  M. Kumngern, W. Jongchanachavawat, and K. Dejhan, “New electronically tunable current-mode universal biquad filter using translinear current conveyors,” International Journal of Electronics, vol. 97, no. 5, pp. 511–523, 2010.
[14]  A. ü. Keskin and U. Cam, “Insensitive high-output impedance minimum configuration SITO-type current-mode biquad using dual-output current conveyors and grounded passive components,” International Journal of Electronics and Communications, vol. 61, no. 5, pp. 341–344, 2007.
[15]  O. ?i?eko?lu, N. Tarim, and H. Kuntman, “Wide dynamic range high output impedance current-mode multifunction filters with dual-output current conveyors,” Archiv fur Elektronik und Ubertragungstechnik, vol. 56, no. 1, pp. 55–60, 2002.
[16]  J. Zhao, J. G. Jiang, and J. N. Liu, “Design of tunable biquadratic filters employing CCCIIs: state variable block diagram approach,” Analog Integrated Circuits and Signal Processing, vol. 62, no. 3, pp. 397–406, 2010.
[17]  J.-W. Horng, “Current-mode universal biquadratic filter with five inputs and one output using three ICCIIs,” Indian Journal of Pure and Applied Physics, vol. 49, no. 3, pp. 214–217, 2011.
[18]  A. Fabre, O. Saaid, and H. Barthelemy, “On the frequency limitations of the circuits based on second generation current conveyors,” Analog Integrated Circuits and Signal Processing, vol. 7, no. 2, pp. 113–129, 1995.
[19]  M. Bhushan and R. W. Newcomb, “Grounding of capacitors in integrated circuits,” Electronic Letters, vol. 3, no. 4, pp. 148–149, 1967.
[20]  W. Surakampontorn, V. Riewruja, K. Kumwachara, and K. Dejhan, “Accurate CMOS-based current conveyors,” IEEE Transactions on Instrumentation and Measurement, vol. 40, no. 4, pp. 699–702, 1991.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413