全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Analytic Model for Conduction Current in AlGaN/GaN HFETs/HEMTs

DOI: 10.1155/2012/806253

Full-Text   Cite this paper   Add to My Lib

Abstract:

We have developed a new, zone-based compact physics-based AlGaN/GaN heterojunction field-effect transistor (HFET) model suitable for use in commercial harmonic-balance microwave circuit simulators. The new model is programmed in Verilog-A, an industry-standard compact modeling language. The new model permits the dc, small-signal, and large-signal RF performance for the transistor to be determined as a function of the device geometric structure and design features, material composition parameters, and dc and RF operating conditions. The new physics-based HFET model does not require extensive parameter extraction to determine model element values, as commonly employed for traditional equivalent-circuit-based transistor models. The new model has been calibrated and verified. We report very good agreement between simulated and measured dc and RF performance of an experimental C-band microwave power amplifier. 1. Introduction AlGaN/GaN heterojunction field-effect transistors (HFETs) are promising RF transistors for use in high-power and high-frequency circuit applications. These HFETs possess a combination of high current density capability and high breakdown voltage due to the desirable physical properties of the materials, such as high critical electric field for breakdown, high electron mobility and saturated carrier velocity, high carrier density in the channel, lower dielectric constant compared to the conventional materials, and high thermal conductivity. These parameters permit the HFET to operate at high RF voltage and current, which results in high power operation at high frequency [1, 2]. The technology for fabricating devices and circuits in AlGaN/GaN is developing rapidly [3–6] and this rapid development is creating a need for improved device models. RF power amplifiers based on AlGaN/GaN HFETs are now commercially available from several companies, including Nitronex, RFMD, and TriQuint. However, to date, no commercially available HFET model for use in harmonic-balance circuit simulators exists that can predict the large-signal RF operation of an HFET or an MMIC before the active device is fabricated, characterized, and fitted. The basic structure for an HFET is shown in Figure 1. The dc and RF performance of the transistor varies with the physical dimensions and material properties. However, the sensitivity of RF power performance to the physical parameters will vary, depending upon the particular parameter, and variations in some parameters (e.g., the gate length, ) have a more significant effect upon device performance than others. These

References

[1]  J. C. Zolper, “Wide bandgap semiconductor microwave technologies: from promise to practice,” in Proceedings of the IEEE International Devices Meeting (IEDM '99), pp. 389–392, December 1999.
[2]  R. J. Trew, “SiC and GaN transistors-Is there one winner for microwave power applications?” Proceedings of the IEEE, vol. 90, no. 6, pp. 1032–1047, 2002.
[3]  M. A. Khan, A. Bhattarai, J. N. Kuznia, and D. T. Olson, “High electron mobility transistor based on a GaN—AlxGa (1-x)N heterojunction,” Applied Physics Letters, vol. 63, no. 9, pp. 1214–1215, 1993.
[4]  Y. F. Wu, B. P. Keller, P. Fini et al., “High Al-content AlGaN/GaN MODFET's for ultrahigh performance,” IEEE Electron Device Letters, vol. 19, no. 2, pp. 50–53, 1998.
[5]  W. Lu, J. Yang, M. A. Khan, and I. Adesida, “AlGaN/GaN HEMTs on SiC with over 100 GHz fT and low microwave noise,” IEEE Transactions on Electron Devices, vol. 48, no. 3, pp. 581–585, 2001.
[6]  Y. Cordier, J. C. Moreno, N. Baron et al., “Demonstration of AlGaN/GaN high-electron-mobility transistors grown by molecular beam epitaxy on Si(110),” IEEE Electron Device Letters, vol. 29, no. 11, pp. 1187–1189, 2008.
[7]  I. Angelov, H. Zirath, and N. Rorsman, “A new empirical nonlinear model for HEMT-devices,” in Proceedings of the IEEE MTT-S International Microwave Symposium Digest Part 3, pp. 1583–1586, 1992.
[8]  I. Angelov, L. Bengtsson, and M. Garcia, “Extensions of the chalmers nonlinear HEMT and MESFET model,” IEEE Transactions on Microwave Theory and Techniques, vol. 44, no. 10, pp. 1664–1674, 1996.
[9]  Silvaco Manual, Silvaco Data Systems Inc., Santa Clara, Calif, USA.
[10]  A. Asgari, M. Kalafi, and L. Faraone, “A quasi-two-dimensional charge transport model of AlGaN/GaN high electron mobility transistors (HEMTs),” Physica E, vol. 28, no. 4, pp. 491–499, 2005.
[11]  H. Ahn and M. El Nokali, “Analytical model for high electron mobility transistors,” IEEE Transactions on Electron Devices, vol. 41, no. 6, pp. 874–878, 1994.
[12]  R. Singh and C. M. Snowden, “A quasi-two-dimensional HEMT model for DC and microwave simulation,” IEEE Transactions on Electron Devices, vol. 45, no. 6, pp. 1165–1169, 1998.
[13]  J. D. Albrecht, P. P. Ruden, S. C. Binari, and M. G. Ancona, “AlGaN/GaN heterostructure field-effect transistor model including thermal effects,” IEEE Transactions on Electron Devices, vol. 47, no. 11, pp. 2031–2036, 2000.
[14]  T. H. Yu and K. F. Brennan, “Theoretical study of a GaN-AlGaN high electron mobility transistor including a nonlinear polarization model,” IEEE Transactions on Electron Devices, vol. 50, no. 2, pp. 315–323, 2003.
[15]  A. Koudymov, M. S. Shur, G. Simin et al., “Analytical HFET I-V model in presence of current collapse,” IEEE Transactions on Electron Devices, vol. 55, no. 3, pp. 712–720, 2008.
[16]  X. Cheng, M. Li, and Y. Wang, “Physics-Based Compact Model for AlGaN/GaN MODFETs With Close-Formed I- V and C- V Characteristics,” IEEE Transactions on Electron Devices, vol. 36, no. 2, pp. 231–239, 1988.
[17]  M. W. Shin, R. J. Trew, and G. L. Bilbro, “High temperature dc and RF performance of p-type diamond MESFET: comparison with N-type GaAs MESFET,” IEEE Electron Device Letters, vol. 15, no. 8, pp. 292–294, 1994.
[18]  C. W. Hatfield, G. L. Bilbro, S. T. Allen, and J. W. Palmour, “DC I-V characteristics and RF performance of a 4H-SiC JFET at 773 K,” IEEE Transactions on Electron Devices, vol. 45, no. 9, pp. 2072–2074, 1998.
[19]  M. A. Khatibzadeh and R. J. Trew, “LARGE-SIGNAL, ANALYTIC MODEL FOR THE GAAS MESFET,” IEEE Transactions on Microwave Theory and Techniques, vol. 36, no. 2, pp. 231–238, 1988.
[20]  R. J. Trew, Y. Liu, G. L. Bilbro, W. Kuang, R. Vetury, and J. B. Shealy, “Nonlinear source resistance in high-voltage microwave alGaN/gaN HFETs,” IEEE Transactions on Microwave Theory and Techniques, vol. 54, no. 5, pp. 2061–2067, 2006.
[21]  H. Yin, D. Hou, G. L. Bilbro, and R. J. Trew, “Harmonie balance simulation of a new physics based model of the AlGaN/GaN HFET,” in Proceedings of the IEEE International Microwave Symposium Digest, (MTT-S '08), pp. 1425–1428, 2008.
[22]  C. Canali, G. Majni, R. Minder, and G. Ottaviani, “Electron and hole drift velocity measurements in silicon and their empirical relation to electric field and temperature,” IEEE Transactions on Electron Devices, vol. 22, no. 11, pp. 1045–1047, 1975.
[23]  M. Farahmand, C. Garetto, E. Bellotti et al., “Monte Carlo simulation of electron transport in the III-nitride Wurtzite phase materials system: binaries and ternaries,” IEEE Transactions on Electron Devices, vol. 48, no. 3, pp. 535–542, 2001.
[24]  V. M. Polyakov and F. Schwierz, “Influence of electron mobility modeling on dc I-V characteristics of WZ-GaN MESFET,” IEEE Transactions on Electron Devices, vol. 48, no. 3, pp. 512–516, 2001.
[25]  B. K. Ridley, “Coupled surface and channel transport in semiconductor heterostructures,” Journal of Applied Physics, vol. 90, no. 12, pp. 6135–6139, 2001.
[26]  O. Ambacher, J. Smart, J. R. Shealy et al., “Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- And Ga-face AIGaN/GaN heterostructures,” Journal of Applied Physics, vol. 85, no. 6, pp. 3222–3233, 1999.
[27]  T. A. Winslow and R. J. Trew, “Principles of large-signal MESFET operation,” IEEE Transactions on Microwave Theory and Techniques, vol. 42, no. 6, pp. 935–942, 1994.
[28]  R. J. Trew, Y. Liu, W. Kuang et al., “RF breakdown and large-signal modeling of AlGaN/GaN HFET's,” in Proceedings of the IEEE International Microwave Symposium Digest (MTT-S '06), pp. 643–646, San Francisco, Calif, USA, 2006.
[29]  R. J. Trew, D. S. Green, and J. B. Shealy, “AlGaN/GaN HFET reliability,” IEEE Microwave Magazine, vol. 10, pp. 116–127, 2009.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413