全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Information  2013 

Epistemological Levelism and Dynamical Complex Systems: The Case of Crowd Behaviour

DOI: 10.3390/info4010075

Keywords: complex systems, simulation, crowd

Full-Text   Cite this paper   Add to My Lib

Abstract:

The main aim of this paper is to show how the design and creation of computational models to study and simulate of the behaviour of dynamical complex systems, and in particular crowds of pedestrian, actually implicitly employs elements of a framework introduced by Luciano Floridi in his paper “The Method of Levels of Abstraction”. The example of the computer based simulation of the complex phenomenon of crowd dynamics and the related knowledge requiring different abstract levels and representation will be introduced in order to show how concepts like observables and system behaviour are commonly employed to compare and evaluate simulation models.

References

[1]  Floridi, L. The Method of Levels of Abstraction. Mind. Mach. 2008, 18, 303–329, doi:10.1007/s11023-008-9113-7.
[2]  Grüne-Yanoff, T.; Weirich, P. The Philosophy and Epistemology of Simulation: A Review. Simul. Gaming 2010, 41, 20–50, doi:10.1177/1046878109353470.
[3]  Winsberg, E. Simulations, Models, and Theories: Complex Physical Systems and Their Representations. Proc. Philos. Sci. Assoc. 2001, 2001, 442–454.
[4]  Winsberg, E. Simulated Experiments: Methodology for a Virtual World. Philos. Sci. 2003, 70, 105–125, doi:10.1086/367872.
[5]  Varenne, F. Framework for M&S with Agents in regard to Agent Simulations in Social Sciences: Emulation and Simulation. In Activity-Based Modeling and Simulation; Muzy, A., Hill, D.R.C., Zeigler, B.P., Eds.; Presses Universitaires Blaise Pascal: Clermont-Ferrand, France, 2010; pp. 53–84.
[6]  Gilbert, N.; Troitzsch, K.G. Simulation for the Social Scientist, 2nd ed.; Open University Press: Maidenhead, UK, 2005.
[7]  Edmonds, B. The Use of Models—Making MABS More Informative. In Multi-Agent-Based Simulation, Second International Workshop, MABS 2000,Boston, MA, USA, July 2000; Springer–Verlag: Heidelberg, Germany, 2001; Volume 1979, pp. 15–32.
[8]  Bandini, S.; Manzoni, S.; Vizzari, G. Agent Based Modeling and Simulation: An Informatics Perspective. Available online: http://jasss.soc.surrey.ac.uk/12/4/4.html (accessed on 14 January 2013).
[9]  Evacmod.net. Available online: http://www.evacmod.net/?q=node/5 (accessed on 1 January 2013).
[10]  Schadschneider, A.; Klingsch, W.; Klüpfel, H.; Kretz, T.; Rogsch, C.; Seyfried, A. Evacuation Dynamics: Empirical Results, Modeling and Applications. In Encyclopedia of Complexity and Systems Science; Meyers, R.A., Ed.; Springer: Heidelberg, Germany, 2009; pp. 3142–3176.
[11]  Axtell, R.; Axelrod, R.; Epstein, J.M.; Cohen, M.D. Aligning Simulation Models: A Case Study and Results. Comput. Math. Organ. Theor. 1996, 1, 123–141, doi:10.1007/BF01299065.
[12]  Kuligowski, E.D.; Gwynne, S.M.V. Pedestrian and Evacuation Dynamics 2008; Springer: Heidelberg, Germany, 2010; pp. 721–732.
[13]  Hall, E.T. The Hidden Dimension; Anchor Books: New York, NY, USA, 1966.
[14]  Hall, E.T. A System for the Notation of Proxemic Behavior. Am. Anthropol. 1963, 65, 1003–1026.
[15]  Chattaraj, U.; Seyfried, A.; Chakroborty, P. Comparison of Pedestrian Fundamental Diagram Across Cultures. Adv. Complex Syst. 2009, 12, 393–405, doi:10.1142/S0219525909002209.
[16]  Costa, M. Interpersonal Distances in Group Walking. J. Nonverbal Behav. 2010, 34, 15–26, doi:10.1007/s10919-009-0077-y.
[17]  Canetti, E. Crowds and Power; Farrar, Straus and Giroux: New York, NY, USA, 1984.
[18]  Bandini, S.; Manzoni, S.; Redaelli, S. Towards an Ontology for Crowds Description: A Proposal Based on Description Logic; Umeo, H., Morishita, S., Nishinari, K., Komatsuzaki, T., Bandini, S., Eds.; Springer: Heidelberg, Germany, 2008; Volume 5191, pp. 538–541.
[19]  Bandini, S.; Manenti, L.; Manzoni, S.; Sartori, F. A Knowledge-Based Approach to Crowd Classification. In Proceedings of the The 5th International Conference on Pedestrian and Evacuation Dynamics, Gaithersburg, MD, USA, 8–10 March 2010.
[20]  Schreckenberg, M.; Sharma, S.D. Pedestrian and Evacuation Dynamics; Springer–Verlag: Heidelberg, Germany, 2001.
[21]  Helbing, D.; Schweitzer, F.; Keltsch, J.; Molnár, P. Active Walker Model for the Formation of Human and Animal Trail Systems. Phys. Rev. E 1997, 56, 2527–2539, doi:10.1103/PhysRevE.56.2527.
[22]  Helbing, D.; Molnár, P. Social force model for pedestrian dynamics. Phys. Rev. E 1995, 51, 4282–4286, doi:10.1103/PhysRevE.51.4282.
[23]  Helbing, D. A Fluid–Dynamic Model for the Movement of Pedestrians. Complex Syst. 1992, 6, 391–415.
[24]  Okazaki, S. A Study of Pedestrian Movement in Architectural Space, Part 1: Pedestrian Movement by the Application of Magnetic Models. Trans. AIJ 1979, 111–119.
[25]  Moussa? d, M.; Perozo, N.; Garnier, S.; Helbing, D.; Theraulaz, G. The Walking Behaviour of Pedestrian Social Groups and Its Impact on Crowd Dynamics. PLoS ONE 2010, 5, e10047.
[26]  Nagel, K.; Schreckenberg, M. A cellular automaton model for freeway traffic. J. Phys. I Fr. 1992, 2, 222–235.
[27]  Blue, V.J.; Adler, J.L. Cellular Automata Microsimulation of Bi-Directional Pedestrian Flows. Transport. Res. Rec. 1999, 1678, 135–141, doi:10.3141/1678-17.
[28]  Blue, V.J.; Adler, J.L. Modeling Four-Directional Pedestrian Flows. Transport. Res. Rec. 2000, 1710, 20–27, doi:10.3141/1710-03.
[29]  Schadschneider, A.; Kirchner, A.; Nishinari, K. CA Approach to Collective Phenomena in Pedestrian Dynamics. In Cellular Automata,5th International Conference on Cellular Automata for Research and Industry, ACRI 2002; Bandini, S., Chopard, B., Tomassini, M., Eds.; Springer: Heidelberg, Germany, 2002; Volume 2493, pp. 239–248.
[30]  Nishinari, K.; Suma, Y.; Yanagisawa, D.; Tomoeda, A.; Kimura, A.; Nishi, R. Pedestrian and Evacuation Dynamics 2008; Springer: Heidelberg, Germany, 2008; pp. 293–308.
[31]  Was, J. Crowd Dynamics Modeling in the Light of Proxemic Theories. In ICAISC (2); Rutkowski, L., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M., Eds.; Springer: Heidelberg, Germany, 2010; Volume 6114, pp. 683–688.
[32]  Sarmady, S.; Haron, F.; Talib, A.Z.H. Modeling Groups of Pedestrians in Least Effort Crowd Movements Using Cellular Automata. In Asia International Conference on Modelling and Simulation; Al-Dabass, D., Triweko, R., Susanto, S., Abraham, A., Eds.; IEEE: Washington, DC, USA, 2009; pp. 520–525.
[33]  Henein, C.M.; White, T. Agent-Based Modelling of Forces in Crowds. In Multi-Agent and Multi- Agent-Based Simulation, Joint Workshop MABS 2004; Davidsson, P., Logan, B., Takadama, K., Eds.; Springer–Verlag: Heidelberg, Germany, 2005; Volume 3415, pp. 173–184.
[34]  Dijkstra, J.; Jessurun, J.; de Vries, B.; Timmermans, H.J.P. Agent Architecture for Simulating Pedestrians in the Built Environment. In International Workshop on Agents in Traffic and Transportation; Hakodate, Japan, 2006; pp. 8–15.
[35]  Batty, M. Agent Based Pedestrian Modeling (editorial). Environ. Plan. B Plan. Des. 2001, 28, 321–326.
[36]  Gloor, C.; Stucki, P.; Nagel, K. Hybrid Techniques for Pedestrian Simulations. In Cellular Automata,6th International Conference on Cellular Automata for Research and Industry, ACRI 2004; Sloot, P.M.A., Chopard, B., Hoekstra, A.G., Eds.; Springer: Heidelberg, Germany, 2004; Volume 3305, pp. 581–590.
[37]  Toyama, M.C.; Bazzan, A.L.C.; da Silva, R. An agent-based simulation of pedestrian dynamics: from lane formation to auditorium evacuation. In 5th International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS 2006); Nakashima, H., Wellman, M.P., Weiss, G., Stone, P., Eds.; ACM: New York, NY, USA, 2006; pp. 108–110.
[38]  Bandini, S.; Federici, M.L.; Vizzari, G. Situated Cellular Agents Approach to Crowd Modeling and Simulation. Cybern. Syst. 2007, 38, 729–753, doi:10.1080/01969720701534141.
[39]  Musse, S.R.; Thalmann, D. Hierarchical Model for Real Time Simulation of Virtual Human Crowds. IEEE Trans. Vis. Comput. Graph. 2001, 7, 152–164, doi:10.1109/2945.928167.
[40]  Curtis, S.; Guy, S.J.; Zafar, B.; Manocha, D. Virtual Tawaf: A case study in simulating the behavior of dense, heterogeneous crowds. In ICCV Workshops; IEEE: Washington, DC, USA, 2011; pp. 128–135.
[41]  Shao, W.; Terzopoulos, D. Autonomous pedestrians. Graph. Model. 2007, 69, 246–274, doi:10.1016/j.gmod.2007.09.001.
[42]  Paris, S.; Donikian, S. Activity-Driven Populace: A Cognitive Approach to Crowd Simulation. IEEE Comput. Graph. Appl. 2009, 29, 34–43, doi:10.1109/MCG.2009.58.
[43]  Murakami, Y.; Ishida, T.; Kawasoe, T.; Hishiyama, R. Scenario Description for Multi-agent Simulation; AAMAS, ACM: New York, NY, USA, 2003; pp. 369–376.
[44]  Manenti, L.; Manzoni, S.; Vizzari, G.; Ohtsuka, K.; Shimura, K. An Agent-Based Proxemic Model for Pedestrian and Group Dynamics: Motivations and First Experiments; Villatoro, D., Sabater- Mir, J., Sichman, J.S., Eds.; Springer: Heidelberg, Germany, 2011; Volume 7124, pp. 74–89.
[45]  Reynolds, C.W. Flocks, herds and schools: A distributed behavioral model. In SIGGRAPH ’87: Proceedings of the 14th Annual Conference on Computer Graphics and Interactive Techniques; ACM: New York, NY, USA, 1987; pp. 25–34.
[46]  Batty, M. Advanced Spatial Analysis: The CASA Book of GIS; Esri Press: Aylesbury, UK, 2003; pp. 81–106.
[47]  Nodebox. Available online: http://www.nodebox.org (assessed on 7 January 2013).
[48]  Pettré, J.; Ond?ej, J.; Olivier, A.H.; Cretual, A.; Donikian, S. Experiment-based modeling, simulation and validation of interactions between virtual walkers. In Proceedings of the 2009 ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA ’09); ACM: New York, NY, USA, 2009; pp. 189–198.
[49]  Helbing, D.; Farkas, I.J.; Molnár, P; Vicsek, T. Pedestrian and Evacuation Dynamics; Springer: Heidelberg, Germany, 2001; pp. 21–58.
[50]  Weidmann, U. Transporttechnik der Fussg?nger—Transporttechnische Eigenschaftendes Fussg?ngerverkehrs (Literaturstudie). Literature Research 90, Institut füer Verkehrsplanung, Transporttechnik, Strassen- und Eisenbahnbau IVT an der ETH Zu¨ rich, Zürich, Switzerland, 1993.
[51]  Predtechenskii, V.; Milinski?. Planning for Foot Traffic Flow in Buildings; Amerind Publishing: New York, NY, USA, 1978.
[52]  Helbing, D.; Johansson, A.; Al-Abideen, H.Z. The Dynamics of Crowd Disasters: An Empirical Study. Phys. Rev. E 2007, 75, doi:10.1103/PhysRevE.75.046109.
[53]  Mori, M.; Tsukaguchi, H. A new method for evaluation of level of service in pedestrian facilities. Trans. Res. A 1987, 21, 223–234, doi:10.1016/0191-2607(87)90016-1.
[54]  Zafar, B. Analysis of the Mataf—Ramadan 1432 AH; Technical Report, Hajj Research Institute, Umm al-Qura University, Saudi Arabia, 2011.
[55]  Fruin, J.J. Pedestrian planning and design; Metropolitan Association of Urban Designers and Environmental Planners: New York, NY, USA, 1971.
[56]  Vizzari, G.; Manenti, L.; Ohtsuka, K.; Shimura, K. An Agent-Based Approach to Pedestrian and Group Dynamics: Experimental and Real World Scenarios. In Proceedings of the 7th International Workshop on Agents in Traffic and Transportation, Valencia, Spain, 2012.
[57]  Castle, C.; Waterson, N.; Pellissier, E.; Bail, S. A Comparison of Grid-based and Continuous Space Pedestrian Modelling Software: Analysis of Two UK Train Stations. In Pedestrian and Evacuation Dynamics; Peacock, R.D., Kuligowski, E.D., Averill, J.D., Eds.; Springer: Heidelberg, Germany, 2011; pp. 433–446.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413