全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Comparative Study of , , and BeO Ultrathin Interfacial Barrier Layers in Si Metal-Oxide-Semiconductor Devices

DOI: 10.1155/2012/359580

Full-Text   Cite this paper   Add to My Lib

Abstract:

In a previous study, we have demonstrated that beryllium oxide (BeO) film grown by atomic layer deposition (ALD) on Si and III-V MOS devices has excellent electrical and physical characteristics. In this paper, we compare the electrical characteristics of inserting an ultrathin interfacial barrier layer such as SiO2, Al2O3, or BeO between the HfO2 gate dielectric and Si substrate in metal oxide semiconductor capacitors (MOSCAPs) and n-channel inversion type metal oxide semiconductor field effect transistors (MOSFETs). Si MOSCAPs and MOSFETs with a BeO/HfO2 gate stack exhibited high performance and reliability characteristics, including a 34% improvement in drive current, slightly better reduction in subthreshold swing, 42% increase in effective electron mobility at an electric field of 1?MV/cm, slightly low equivalent oxide thickness, less stress-induced flat-band voltage shift, less stress induced leakage current, and less interface charge. 1. Introduction The CMOS scaling is bringing the SiO2 thickness below 1.5?nm. For these very thin oxides, the leakage current becomes unacceptably large. One way to reduce the leakage current is the substitution of the SiO2 by a material with a higher dielectric constant. The main advantage of high-k dielectrics is the low gale leakage achieved due to its high physical thickness. That also makes it attractive for low power applications. Because of these requirements, over the past 10 years, hafnium oxide (HfO2) has gained considerable interest as a high dielectric constant material for fabricating complementary metal oxide semiconductor (CMOS) devices. It has several attractive properties such as a high dielectric constant, good thermodynamic stability with Si, and good electrical properties [1]. Unfortunately, some of the other physical properties like mobility reduction, charge trapping, and threshold voltage ( ) instability are a major drawback for the performance of metal oxide semiconductor field effect transistors (MOSFETs) [2]. Especially HfO2 high-k dielectric stacked MOSFETs were reported with low carrier mobility [3]. The main cause for the low mobility is still unknown, but has been attributed to remote Coulomb scattering caused by charges in the high-k dielectric [4] or optical phonon scattering [5]. Many researchers have believed that it is inevitable for all high-k dielectrics to have low energy bandgap and high scattering, compared to SiO2. Therefore, if high-k dielectric with high energy bandgap and low scattering can be found, it will be the true solution for the above problems. An alternative

References

[1]  K. J. Hubbard and D. G. Schlom, “Thermodynamic stability of binary oxides in contact with silicon,” Journal of Materials Research, vol. 11, no. 11, pp. 2757–2776, 1996.
[2]  A. Kerber, E. Cartier, R. Degraeve, L. Pantisano, P. Roussel, and G. Groeseneken, “Strong correlation between dielectric reliability and charge trapping in SiO2/Al2O3 gate stacks with TiN electrodes,” in Proceedings of the Symposium on VLSI Technology Digest of Technical Papers, pp. 76–77, June 2002.
[3]  Y. Kim, G. Gebara, M. Freiler et al., “Conventional n-channel MOSFET devices using single layer HfO2 and ZrO2 as high-k gate dielectrics with polysilicon gate electrode,” in IEEE International Electron Devices Meeting (IEDM '01), pp. 455–458, Washington, DC, USA, December 2001.
[4]  S. Saito, Y. Shimamoto, K. Torii et al., “The mechanism of mobility degradation in MISFETs with Al2O3 gate dielectric,” in Proceedings of the Symposium on VLSI Technology Digest of Technical Papers, pp. 188–189, June 2002.
[5]  M. V. Fischetti, D. A. Neumayer, and E. A. Cartier, “Effective electron mobility in Si inversion layers in metal-oxide-semiconductor systems with a high-κ insulator: the role of remote phonon scattering,” Journal of Applied Physics, vol. 90, no. 9, pp. 4587–4608, 2001.
[6]  J. H. Yum, T. Akyol, M. Lei et al., “Atomic layer deposited beryllium oxide: effective passivation layer for III-V metal/oxide/semiconductor devices,” Journal of Applied Physics, vol. 109, no. 6, Article ID 064101, 2011.
[7]  J. H. Yum, T. Akyol, M. Lei et al., “A study of highly crystalline novel beryllium oxide film using atomic layer deposition,” Journal of Crystal Growth, vol. 334, pp. 126–133, 2011.
[8]  J. H. Yum, T. Akyol, M. Lei et al., “Inversion type InP metal oxide semiconductor field effect transistor using novel atomic layer deposited BeO gate dielectric,” Applied Physics Letters, vol. 99, no. 3, Article ID 033502, 2011.
[9]  J. H. Yum, T. Akyol, M. Lei et al., “Comparison of the self-cleaning effects and electrical characteristics of BeO and Al2O3 deposited as an interface passivation layer on GaAs MOS devices,” Journal of Vacuum Science and Technology A, vol. 29, no. 6, Article ID 061501, 2011.
[10]  J. H. Yum, T. Akyol, M. Lei et al., “Epitaxial ALD BeO: efficient oxygen diffusion barrier for EOT scaling and reliability improvement,” Electron Device Letters, vol. 58, no. 12, pp. 4384–4392, 2011.
[11]  R. E. Hummel, Electronic Properties of Materials, chapter 21, 3rd edition, 2001.
[12]  A. A. Dameron, S. D. Davidson, B. B. Burton, P. F. Carcia, R. S. McLean, and S. M. George, “Gas diffusion barriers on polymers using multilayers fabricated by Al2O3 and rapid SiO2 atomic layer deposition,” Journal of Physical Chemistry C, vol. 112, no. 12, pp. 4573–4580, 2008.
[13]  D. R. Gaskell, Introduction to the Thermodynamics of Materials, chapter 4, 5th edition, 2008.
[14]  J. H. Yum, G. Bersuker, J. Oh, and S. K. Banerjee, “Theoretical approach evaluating beryllium oxide as A gate dielectric in the view points of electromagnetics and thermal stability,” Applied Physics Letters, vol. 100, no. 5, Article ID 053501, 3 pages, 2012.
[15]  B. G. Streetman and S. K. Banerjee, Solid State Electronic Devices, 6th edition, 2005.
[16]  S. J. Rhee, C. Y. Kang, C. S. Kang et al., “Effects of varying interfacial oxide and high-k layer thicknesses for HfO2 metal-oxide-semiconductor field effect transistor,” Applied Physics Letters, vol. 85, no. 7, pp. 1286–1288, 2004.
[17]  Y. Zhao, G. C. Wang, and T. M. Lu, Characterization of Amorphous and Crystalline Rough Surface: Principles and Applications, chapter 6, 7, and 16, 2000.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413