全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The Improvement of Reliability of High-k/Metal Gate pMOSFET Device with Various PMA Conditions

DOI: 10.1155/2012/872494

Full-Text   Cite this paper   Add to My Lib

Abstract:

The oxygen and nitrogen were shown to diffuse through the TiN layer in the high-k/metal gate devices during PMA. Both the oxygen and nitrogen annealing will reduce the gate leakage current without increasing oxide thickness. The threshold voltages of the devices changed with various PMA conditions. The reliability of the devices, especially for the oxygen annealed devices, was improved after PMA treatments. 1. Introduction High-k/metal gates are needed to continuous device scaling-down. However, threshold voltage instability and performance degradation are important problems for high-k devices [1]. The defect density in the interface of gate stack is the major cause for negative bias temperature instability (NBTI) as well as mobility degradation [1]. Oxygen vacancy is known to play an important role in threshold voltage variations [2] and is a significant defect in the HfO2/Si system [3]. The influence of charge oxygen vacancies introduces a dipole offset between the gate metal and the substrate [4]. Post metallization annealing (PMA) is used to reduce the defects at the interface, such as fixed oxide charges, oxide trapped charges, and interface charges [5]. Previous work has demonstrated that oxygen vacancies can be passivated for device with noble metal gate by oxygen diffusion through the gate metal [6]. However, these suffer from high equivalent oxide thickness. In this work, we show that both oxygen and nitrogen can be diffused through thin TiN layer and passivate the oxygen vacancies without increasing the oxide thickness by using PMA with various temperatures. Negative bias instability for pFET is improved, especially for the oxygen annealed one. 2. Experimental 28?nm FET high-k/metal gate was formed on bulk Si. After interfacial SiO2 layer/high-k and TiN deposition, TiN layer was then deposited with the thickness of 100~200??. The fabrication process of the high-k metal gate last device was sketched in Figure 1. Some of the samples were annealed at 400°C and 450°C in oxygen or nitrogen ambient for several minutes, respectively. Figure 1: The fabrication process of the high-k metal gate last device. The capacitance-voltage ( - ) curves were measured with an HP4280 precision LCR meter and the current-voltage ( - ) curves with an HP-4156B. After the basic electric measurements, the samples were then stressed by using a constant voltage of . After stressing, the samples were measured again to find out the performance of reliability. 3. Results and Discussions Figure 2 shows the?? - curves of the samples measured with 1 MHz. The extracted EOT for

References

[1]  H. H. Tseng, P. J. Tobin, S. Kalpat et al., “Defect passivation with fluorine and interface engineering for Hf-based high-κ/metal gate stack device reliability and performance enhancement,” IEEE Transactions on Electron Devices, vol. 54, no. 12, pp. 3267–3275, 2007.
[2]  S. Zafar, H. Jagannathan, L. F. Edge, and D. Gupta, “Oxygen vacancy mobility and diffusion coefficient determined from current measurements in SiO2/HfO2/TiN stacks,” in Proceedings of the International Conference on Solid State Devices and Materials, p. 669, 2010.
[3]  S. Guha and V. Narayanan, “Oxygen vacancies in high dielectric constant oxide-semiconductor films,” Physical Review Letters, vol. 98, no. 19, Article ID 196101, 2007.
[4]  K. Shiraishi, K. Yamada, K. Torii et al., “Oxygen vacancy induced substantial threshold voltage shifts in the Hf-based high-K MISFET with p+poly-Si gates -A theoretical approach,” Japanese Journal of Applied Physics, Part 2, vol. 43, no. 11 A, pp. L1413–L1415, 2004.
[5]  M.-J. Jeng, H.-S. Lin, and J.-G. Hwu, “Rapid thermal post-metallization annealing effect on thin gate oxides,” Applied Surface Science, vol. 92, pp. 208–211, 1996.
[6]  E. Cartier, M. Hopstaken, and M. Copel, “Oxygen passivation of vacancy defects in metal-nitride gated HfO2/SiO2/Si devices,” Applied Physics Letters, vol. 95, no. 4, Article ID 042901, 2009.
[7]  C. C. Hong and J. G. Hwu, “Degradation in metal-oxide-semiconductor structure with ultrathin gate oxide due to external compressive stress,” Applied Physics Letters, vol. 79, no. 23, pp. 3797–3799, 2001.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133