The effect of sonication temperature on the debundling of carbon nanotube (CNT) macro-bundles is reported and demonstrated by analysis with different particle sizing methods. The change of bundle size over time and after several comparatively gentle sonication cycles of suspensions at various temperatures is reported. A novel technique is presented that produces a more homogeneous nanotube dispersion by lowering the temperature during sonication. We produce evidence that temperature influences the suspension stability, and that low temperatures are preferable to obtain better dispersion without increasing damage to the CNT walls.
References
[1]
Rosca, I.D.; Hoa, S.V. Method for reducing contact resistivity of carbon nanotube-containing epoxy adhesives for aerospace applications. Compos. Sci. Technol. 2011, 71, 95–100, doi:10.1016/j.compscitech.2010.10.016.
[2]
Yu, S.; Tong, M.N.; Critchlow, G. Use of carbon nanotubes reinforced epoxy as adhesives to join aluminum plates. Mater. Des. 2010, 31, S126–S129, doi:10.1016/j.matdes.2009.11.045.
[3]
Pei, X.; Wang, J.; Wan, Q.; Kang, L.; Xiao, M.; Bao, H. Functionally graded carbon nanotubes/hydroxyapatite composite coating by laser cladding. Surf. Coat. Technol. 2011, 205, 4380–4387, doi:10.1016/j.surfcoat.2011.03.036.
Chen, W.X.; Tu, J.P.; Wang, L.Y.; Gan, H.Y.; Xu, Z.D.; Zhang, X.B. Tribological application of carbon nanotubes in a metal-based composite coating and composites. Carbon 2003, 41, 215–222, doi:10.1016/S0008-6223(02)00265-8.
[6]
Majumder, M.; Keis, K.; Zhan, X.; Meadows, C.; Cole, J.; Hinds, B.J. Enhanced electrostatic modulation of ionic diffusion through carbon nanotube membranes by diazonium grafting chemistry. J. Membr. Sci. 2008, 316, 89–96, doi:10.1016/j.memsci.2007.09.068.
[7]
Dumée, L.F.; Sears, K.; Schütz, J.; Finn, N.; Huynh, C.; Hawkins, S.; Duke, M.; Gray, S. Characterization and evaluation of carbon nanotube bucky-paper membranes for direct contact membrane distillation. J. Membr. Sci. 2010, 351, 36–43, doi:10.1016/j.memsci.2010.01.025.
[8]
Dumée, L.; Germain, V.; Sears, K.; Schütz, J.; Finn, N.; Duke, M.; Cerneaux, S.; Cornu, D.; Gray, S. Enhanced durability and hydrophobicity of carbon nanotube bucky paper membranes in membrane distillation. J. Membr. Sci. 2011, 376, 241–246, doi:10.1016/j.memsci.2011.04.024.
[9]
Kim, M.; Park, Y.-B.; Okoli, O.I.; Zhang, C. Processing, characterization, and modeling of carbon nanotube-reinforced multiscale composites. Compos. Sci. Technol. 2009, 69, 335–342, doi:10.1016/j.compscitech.2008.10.019.
[10]
Khan, U.; Ryan, K.; Blau, W.J.; Coleman, J.N. The effect of solvent choice on the mechanical properties of carbon nanotube-polymer composites. Compos. Sci. Technol. 2007, 67, 3158–3167, doi:10.1016/j.compscitech.2007.04.015.
[11]
Dumee, L.; Hill, M.R.; Duke, M.; Velleman, L.; Sears, K.; Schutz, J.; Finn, N.; Gray, S. Activation of gold decorated carbon nanotube hybrids for targeted gas adsorption and enhanced catalytic oxidation. J. Mater. Chem. 2012, 22, 9374–9378.
[12]
Cola, B.A.; Xu, J.; Fisher, T.S. Contact mechanics and thermal conductance of carbon nanotube array interfaces. Int. J. Heat Mass Transfer 2009, 52, 3490–3503, doi:10.1016/j.ijheatmasstransfer.2009.03.011.
[13]
Han, Z.; Fina, A. Thermal conductivity of carbon nanotubes and their polymer nanocomposites: A review. Prog. Polym. Sci. 2011, 36, 914–944.
K?hler, A.R.; Som, C.; Helland, A.; Gottschalk, F. Studying the potential release of carbon nanotubes throughout the application life cycle. J. Clean. Product. 2008, 16, 927–937, doi:10.1016/j.jclepro.2007.04.007.
[16]
Bose, K.; Wood, R.J.K. Influence of load and speed on rolling micro-abrasion of cvd diamond and other hard coatings. Diam. Relat. Mater. 2003, 12, 753–756, doi:10.1016/S0925-9635(02)00238-8.
[17]
Kasaliwal, G.R.; Pegel, S.; G?ldel, A.; P?tschke, P.; Heinrich, G. Analysis of agglomerate dispersion mechanisms of multiwalled carbon nanotubes during melt mixing in polycarbonate. Polymer 2010, 51, 2708–2720, doi:10.1016/j.polymer.2010.02.048.
[18]
Ham, H.T.; Choi, Y.S.; Chung, I.J. An explanation of dispersion states of single-walled carbon nanotubes in solvents and aqueous surfactant solutions using solubility parameters. J. Colloid Interface Sci. 2005, 286, 216–223.
[19]
Ma, P.-C.; Siddiqui, N.A.; Marom, G.; Kim, J.-K. Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: A review. Compos. A 2010, 41, 1345–1367, doi:10.1016/j.compositesa.2010.07.003.
[20]
Xie, X.-L.; Mai, Y.-W.; Zhou, X.-P. Dispersion and alignment of carbon nanotubes in polymer matrix: A review. Mater. Sci. Eng. 2005, 49, 89–112, doi:10.1016/j.mser.2005.04.002.
[21]
Blagov, E.V.; Klimchitskaya, G.L.; Mostepanenko, V.M. Van der waals interaction between a microparticle and a single-walled carbon nanotube. Phys. Rev. B 2007, 75, 235413.
[22]
Parsegian, V.A. Van der Waals Forces: A Handbook for Biologists, Chemists, Engineers, and Physicists; Cambridge University Press: Cambridge, UK, 2005.
[23]
Wei, C.; Srivastava, D.; Cho, K. Thermal expansion and diffusion coefficients of carbon nanotube-polymer composites. Nano Lett. 2002, 2, 647–650, doi:10.1021/nl025554+.
[24]
Hilding, J.; Grulke, E.A.; Zhang, Z.G.; Lockwood, F. Dispersion of carbon nanotubes in liquids. J. Dispers. Sci. Technol. 2003, 24, 1–41, doi:10.1081/DIS-120017941.
[25]
Cheng, Q.; Debnath, S.; Gregan, E.; Byrne, H.J. Effect of solvent solubility parameters on the dispersion of single-walled carbon nanotubes. J. Phys. Chem. C 2008, 112, 20154–20158.
[26]
Gou, J.H. Single-walled nanotube bucky paper and nanocomposite. Polym. Int. 2006, 55, 1283–1288, doi:10.1002/pi.2079.
[27]
Lee, J.U.; Huh, J.; Kim, K.H.; Park, C.; Jo, W.H. Aqueous suspension of carbon nanotubes via non-covalent functionalization with oligothiophene-terminated poly(ethylene glycol). Carbon 2007, 45, 1051–1057, doi:10.1016/j.carbon.2006.12.017.
[28]
Shaffer, M.S.P.; Fan, X.; Windle, A.H. Dispersion and packing of carbon nanotubes. Carbon 1998, 36, 1603–1612, doi:10.1016/S0008-6223(98)00130-4.
[29]
Wang, Y.; Gao, L.; Sun, J.; Liu, Y.; Zheng, S.; Kajiura, H.; Li, Y.; Noda, K. An integrated route for purification, cutting and dispersion of single-walled carbon nanotubes. Chem. Phys. Lett. 2006, 432, 205–208, doi:10.1016/j.cplett.2006.10.054.
[30]
Yu, J.; Grossiord, N.; Koning, C.E.; Loos, J. Controlling the dispersion of multi-wall carbon nanotubes in aqueous surfactant solution. Carbon 2007, 45, 618–623, doi:10.1016/j.carbon.2006.10.010.
[31]
Vaisman, L.; Wagner, H.D.; Marom, G. The role of surfactants in dispersion of carbon nanotubes. Adv. Colloid Interface Sci. 2006, 128–130, 37–46, doi:10.1016/j.cis.2006.11.007.
[32]
Kernan, D.M.; Blau, W.J. Exploring the mechanisms of carbon-nanotube dispersion aggregation in a highly polar solvent. Europhys. Lett. 2008, 83, 66009, doi:10.1209/0295-5075/83/66009.
[33]
Hui, C.; Harish, M.; Paul, S.; Jianhua, Z.; Xiong, L.; Jinhai, W.; Qun, H.; Saiful, I.K.; Lei, Z. Dispersion of carbon nanotubes and polymer nanocomposite fabrication using trifluoroacetic acid as a co-solvent. Nanotechnology 2007, 18, 415606, doi:10.1088/0957-4484/18/41/415606.
[34]
Sun, Z.; Nicolosi, V.; Rickard, D.; Bergin, S.D.; Aherne, D.; Coleman, J.N. Quantitative evaluation of surfactant-stabilised single-walled carbon nanotubes:Dispersion quality and its correlation with zeta potential. J. Phys. Chem. C 2008, 112, 10692–10699, doi:10.1021/jp8021634.
[35]
Lin, T.; Bajapi, V.; Ji, T.; Dai, L. Chemistry of carbon nanotubes. Aust. J. Chem. 2003, 56, 635–651, doi:10.1071/CH02254.
[36]
Priya, B.R.; Byrne, H.J. Investigation of sodium dodecyl benzene sulfonate assisted dispersion and debundling of single-walled carbon nanotubes. J. Phys. Chem. B 2008, 112, 332–337, doi:10.1021/jp0765087.
Zheng, M.; Jagota, A.; Semke, E.D.; Diner, B.A.; Mclean, R.S.; Lustig, S.R.; Richardson, R.E.; Tassis, N.G. DNA-assisted dispersion and separation of carbon nanotubes. Nature 2003, 2, 338–342.
[39]
Dumée, L.; Campbell, J.L.; Sears, K.; Schütz, J.; Finn, N.; Duke, M.; Gray, S. The impact of hydrophobic coating on the performance of carbon nanotube bucky-paper membranes in membrane distillation. Desalination 2011, 283, 64–67, doi:10.1016/j.desal.2011.02.046.
[40]
Dumée, L.F.; Gray, S.; Duke, M.; Sears, K.; Schütz, J.; Finn, N. The role of membrane surface energy on direct contact membrane distillation performance. Desalination 2013. in press.
Park, T.-J.; Banerjee, S.; Hemraj-Benny, T.; Wong, S.S. Purification strategies and purity visualization for single-walled carbon nanotubes. J. Mater. Chem. 2006, 16, 141–154.
[43]
Etika, K.C.; Jochum, F.D.; Theato, P.; Grunlan, J.C. Temperature controlled dispersion of carbon nanotubes in water with pyrene-functionalized poly(n-cyclopropylacrylamide). J. Am. Chem. Soc. 2009, 131, 13598–13599.
[44]
Etika, K.C.; Cox, M.A.; Grunlan, J.C. Tailored dispersion of carbon nanotubes in water with ph-responsive polymers. Polymer 2010, 51, 1761–1770.
[45]
Huynh, C.P.; Hawkins, S.C. Understanding the synthesis of directly spinnable carbon nanotube forests. Carbon 2010, 48, 1105–1115.
[46]
Zhbanov, A.I.; Pogorelov, E.G.; Chang, Y.-C. Van der waals interaction between two crossed carbon nanotubes. ACS Nano 2010, 4, 5937–5945.
[47]
Zarkova, L.; Hohm, U. Effective (n-6) lennard-jones potentials with temperature-dependent parameters introduced for accurate calculation of equilibrium and transport properties of ethene, propene, butene, and cyclopropane. J. Chem. Eng. Data 2009, 54, 1648–1655, doi:10.1021/je800733b.
[48]
Jones, J.E. On the determination of molecular fields. II. From the equation of state of a gas. Proc. R. Soc. Lond. A 1924, 106, 463–477, doi:10.1098/rspa.1924.0082.
[49]
Esawi, A.M.K.; Farag, M.M. Carbon nanotube reinforced composites: Potential and current challenges. Mater. Des. 2007, 28, 2394–2401.
[50]
O’Connell, M.J. Carbon Nanotubes: Properties and Applications; Taylor & Francis Group: Boca Raton, NW, USA, 2006.
[51]
Agrawal, S.; Raghuveer, M.S.; Li, H.; Ramanath, G. Defect-induced electrical conductivity increase in individual multiwalled carbon nanotubes. Appl. Phys. Lett. 2007, 90, 193104–193103.
[52]
Bernholc, J.; Brenner, D.; Buongiorno Nardelli, M.; Meunier, V.; Roland, C. Mechanical and electrical properties of nanotubes. Annu. Rev. Mater. Res. 2002, 32, 28.
[53]
Rance, G.A.; Marsh, D.H.; Bourne, S.J.; Reade, T.J.; Khlobystov, A.N. Van der waals interactions between nanotubes and nanoparticles for controlled assembly of composite nanostructures. ACS Nano 2010, 4, 4920–4928.
[54]
Rotkin, S.V.; Hess, K. Many-body terms in van der waals cohesion energy of nanotubes. J. Comput. Electron. 2002, 1, 323–326, doi:10.1023/A:1020779020417.
[55]
Lu, W.B.; Liu, B.; Wu, J.; Xiao, J.; Hwang, K.C.; Fu, S.Y.; Huang, Y. Continuum modeling of van der waals interactions between carbon nanotube walls. Appl. Phys. Lett. 2009, 94, 101917–101913.
[56]
Urbina, A.; Miguel, C.; Delgado, J.L.; Langa, F.; Díaz-Paniagua, C.; Jiménez, M.; Batallán, F. Dynamics of functionalized single wall carbon nanotubes in solution studied by incoherent neutron scattering experiments. J. Phys. 2008, 20, 104208.
[57]
Zheng, L.; Li, S.; Brody, J.P.; Burke, P.J. Manipulating nanoparticles in solution with electrically contacted nanotubes using dielectrophoresis. Langmuir 2004, 20, 8612–8619, doi:10.1021/la049687h.
[58]
Pauzauskie, P.J.; Jamshidi, A.; Valley, J.K.; Satcher, J.J.H.; Wu, M.C. Parallel trapping of multiwalled carbon nanotubes with optoelectronic tweezers. Appl. Phys. Lett. 2009, 95, 113104–113103.
[59]
Rossi, M.P.; Ye, H.; Gogotsi, Y.; Babu, S.; Ndungu, P.; Bradley, J.-C. Environmental scanning electron microscopy study of water in carbon nanopipes. Nano Lett. 2004, 4, 989–993.
[60]
Checco, A.; Hofmann, T.; DiMasi, E.; Black, C.T.; Ocko, B.M. Morphology of air nanobubbles trapped at hydrophobic nanopatterned surfaces. Nano Lett. 2010, 10, 1354–1358, doi:10.1021/nl9042246.
[61]
Papastavrou, G.; Akari, S.; M?hwald, H. Interactions between hydrophilic and hydrophobic surfaces on microscopic scale and the influence of air bubbles as observed by scanning force microscopy in aqueous and alcoholic mediums. Europhys. Lett. 2000, 52, 551, doi:10.1209/epl/i2000-00472-2.
[62]
Krasowska, M.; Zawala, J.; Malysa, K. Air at hydrophobic surfaces and kinetics of three phase contact formation. Adv. Colloid Interface Sci. 2009, 147–148, 155–169, doi:10.1016/j.cis.2008.10.003.
[63]
Yoon, R.H.; Yordan, J.L. The critical rupture thickness of thin water films on hydrophobic surfaces. J. Colloid Interface Sci. 1991, 146, 565–572, doi:10.1016/0021-9797(91)90220-3.
[64]
Pushkarova, R.A.; Horn, R.G. Surface forces measured between an air bubble and a solid surface in water. Colloids Surf. A 2005, 261, 147–152, doi:10.1016/j.colsurfa.2004.10.132.
[65]
Dumée, L.F.; Sears, K.; Marmiroli, B.; Amenitsch, H.; Duan, X.; Lamb, R.; Buso, D.; Huynh, C.; Hawkins, S.; Kentish, S.; et al. A high volume and low damage route to hydroxyl functionalization of carbon nanotubes using hard X-ray lithography. Carbon 2013, 51, 430–434.