Our energy consumption relies heavily on the three components of fossil fuels (oil, natural gas and coal) and nearly 83% of our current energy is consumed from those sources. The use of fossil fuels, however, has been viewed as a major environmental threat because of their substantial contribution to greenhouse gases which are responsible for increasing the global average temperature. Last four decades, scientists have been searching for alternative sources of energy which need to be environmentally clean, efficient, cost-effective, renewable, and sustainable. One of the promising sustainable sources of energy can be achieved by harnessing sun energy through silicon wafer, organic polymer, inorganic dye, and quantum dots based solar cells. Among them, quantum dots have an exceptional property in that they can excite multiple electrons using only one photon. These dots can easily be synthesized, processed in solution, and incorporated into solar cell application. Interestingly, the quantum dots solar cells can exceed the Shockley -Queisser limit; however, it is a great challenge for other solar cell materials to exceed the limit. Theoretically, the quantum dots solar cell can boost the power conversion efficiency up to 66% and even higher to 80%. Moreover, in changing the size of the quantum dots one can utilize the Sun’s broad spectrum of visible and infrared ranges. This review briefly overviews the present performance of different materials-based solar cells including silicon wafer, dye-sensitized, and organic solar cells. In addition, recent advances of the quantum dots based solar cells which utilize cadmium sulfide/selenide, lead sulfide/selenide, and new carbon dots as light harvesting materials has been reviewed. A future outlook is sketched as to how one could improve the efficiency up to 10% from the current highest efficiency of 6.6%.
References
[1]
The Nobel Peace Prize 2007. Available online: http://www.nobelprize.org/nobel_prizes/peace/laureates/2007/ (accessed on 8 September 2012).
[2]
IPCC Press Conference. Available online: http://www.ipcc.ch/pdf/presentations/nobel-peace-prize-2007-12/wg1_presentation_john_houghton.pdf (accessed on 8 September 2012).
[3]
WMO Statement on the Status of the Global Climate in 2011. Available online: http://www.wmo.int/pages/publications/showcase/documents/WMO_1085_en.pdf (accessed on 8 September 2012).
[4]
International Energy Outlook 2011. Available online: http://www.eia.gov/forecasts/ieo/world.cfm (accessed on 8 September 2012).
Hammarstrom, L.; Hammes-Schiffer, S. Artificial photosynthesis and solar fuels. Acc. Chem. Res. 2009, 42, 1859–1860, doi:10.1021/ar900267k.
[7]
Service, R.F. Solar energy-Can the upstarts top silicon? Science 2008, 319, 718–720, doi:10.1126/science.319.5864.718.
[8]
SunTech. Available online: http://am.suntech-power.com/en/technology.html (accessed on 8 September 2012).
[9]
SunPower. Available online: http://us.sunpowercorp.com/about/the-worlds-standard-for-solar/most-efficient-solar/ (accessed on 8 September 2012).
[10]
Horiuchi, N.; Wenham, S. Towards highly efficient solar cells. Nat. Photon. 2012, 6, 136–137, doi:10.1038/nphoton.2012.37.
[11]
Mehta, S.; Bradford, T. PV Technology, Production, and Cost, 2009 Forecast: The Anatomy of a Shakeout; Prometheus Institute and Greentech Media: San Francisco, CA, USA, 2009.
[12]
Oregan, B.; Gr?tzel, M. A low-cost, high-efficiency solar-cell based on dye-sensitized colloidal TiO2 films. Nature 1991, 353, 737–740, doi:10.1038/353737a0.
Gilot, J.; Wienk, M.M.; Janssen, R.A.J. Double and triple junction polymer solar cells processed from solution. Appl. Phys. Lett. 2007, 90, 143512.
[25]
Kim, J.Y.; Lee, K.; Nelson, E.; Coates, N.E.; Moses, D.; Ngygen, T.-Q.; Dante, M.; Heeger, A.J. Efficient tandem polymer solar cells fabricated by all-solution processing. Science 2007, 317, 222–225, doi:10.1126/science.1141711.
[26]
Sista, S.; Park, M.H.; Hong, Z.; Wu, Y.; Hou, J.; Kwan, W.L.; Li, G.; Yang, Y. Highly efficient tandem polymer photovoltaic cells. Adv. Mater. 2010, 22, 380–383, doi:10.1002/adma.200901624.
[27]
Dou, L.; You, J.; Yang, J.; Chen, C.; He, Y.; Murase, S.; Moriarty, T.; Emery, K.; Li, G.; Yang, Y. Tandem polymer solar cells featuring a spectrally matched low-bandgap polymer. Nat. Photon. 2012, 6, 180–185, doi:10.1038/nphoton.2011.356.
[28]
Li, G.; Zhu, R.; Yang, Y. Polymer solar cells. Nat. Photon. 2012, 6, 153–161, doi:10.1038/nphoton.2012.11.
[29]
Peters, C.H.; Sachs-Quintana, I.T.; Kastrop, J.P.; Beaupre, S.; Leclerc, M.; McGehee, M.D. High efficiency polymer solar cells with long operating lifetimes. Adv. Energy Mater. 2011, 1, 491–494, doi:10.1002/aenm.201100138.
[30]
Shockley, W.; Hans, J.; Queisser, H.J. Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys. 1961, 32, 510–519, doi:10.1063/1.1736034.
[31]
Brown, G.F.; Wu, J. Third generation photovoltaics. Laser Photon. Rev. 2009, 3, 394–405, doi:10.1002/lpor.200810039.
[32]
Solar Cell Central. Available online: http://solarcellcentral.com/limits_page.html (accessed on 8 September 2012).
[33]
Norzik, A. Next Generation Photovoltaics Based on Multiple Exciton Generation in Quantum Dot Solar Cells. In Next Generation of Photovoltaics: New Concepts; López, A.B.C., Vega, A.M., Luque López, A.L., Eds.; Springer-Verlag: Berlin Heidelberg, Germany, 2012; pp. 191–207.
[34]
Sambur, J.B.; Novet, T.; Parkinson, B.A. Multiple exciton collection in a sensitized photovoltaic system. Science 2010, 330, 63–66, doi:10.1126/science.1191462.
[35]
Semonin, O.E.; Luther, J.M.; Choi, S.; Chen, H.; Gao, J.; Nozik, A.J.; Beard, M.C. Peak external photocurrent quantum efficiency exceeding 100% via MEG in a quantum qot solar cell. Science 2011, 334, 1530–1533, doi:10.1126/science.1209845.
Emin, S.; Singh, S.P.; Han, L.; Satoh, N.; Islam, A. Colloidal quantum dot solar cells. Solar Energy 2011, 85, 1264–1282, doi:10.1016/j.solener.2011.02.005.
[38]
Bang, J.H.; Kamat, P.V. Quantum dot sensitized solar cells. A tale of two semiconductor nanocrystals: CdSe and CdTe. ACS Nano 2009, 3, 1467–1476, doi:10.1021/nn900324q.
Luther, J.M.; Gao, J.; Lloyd, M.T.; Semonin, O.E.; Beard, M.C.; Nozik, A.J. Stability assessment on a 3% bilayer PbS/ZnO quantum dot heterojunction solar cell. Adv. Mater. 2010, 22, 3704–3707, doi:10.1002/adma.201001148.
[41]
Hetsch, F.; Xu, X.; Wang, H.; Kershaw, S.V.; Rogach, A.L. Semiconductor nanocrystal quantum dots as solar cell components and photosensitizers: Material, charge transfer, and separation aspects of some device topologies. J. Phys. Chem. Lett. 2011, 2, 1879–1887, doi:10.1021/jz200802j.
Robel, I.; Subramanian, V.; Kuno, M.; Kamat, P.V. Quantum dot solar cells. harvesting light energy with cdse nanocrystals molecularly linked to mesoscopic TiO2 films. J. Am. Chem. Soc. 2006, 128, 2385–2393, doi:10.1021/ja056494n.
[44]
Lee, H.J.; Yum, J.; Leventis, H.C.; Zakeeruddin, S.M.; Haque, S.A.; Chen, P.; Seok, S.I.; Gr?tzel, M.; Nazeeruddin, M.K. CdSe Quantum dot-sensitized solar cells exceeding efficiency 1% at full-sun intensity. J. Phys. Chem. C 2008, 112, 11600–11608.
[45]
Farrow, B.; Kamat, P.V. CdSe Quantum dot sensitized solar cells. Shuttling electrons through stacked carbon nanocups. J. Am. Chem. Soc. 2009, 131, 11124–11131, doi:10.1021/ja903337c.
[46]
Landi, B.J.; Castro, S.L.; Ruf, H.J.; Evans, C.M.; Bailey, S.G.; Raffaelle, R.P. CdSe quantum dot-single wall carbon nanotube complexes for polymeric solar cells. Solar Energy Mater. Solar Cells 2005, 87, 733–746, doi:10.1016/j.solmat.2004.07.047.
[47]
Shu, T.; Zhou, Z.; Wang, H.; Liu, G.; Xiang, P.; Rong, Y.; Han, H.; Zhao, Y. Efficient quantum dot-sensitized solar cell with tunable energy band CdSexS(1?x) quantum dots. J. Mater. Chem. 2012, 22, 10525–10529, doi:10.1039/c2jm31177a.
[48]
Toyoda, T.; Oshikane, K.; Li, D.; Luo, Y.; Meng, Q.; Shen, Q. Photoacoustic and photoelectrochemical current spectra of combined Cds/Cdse quantum dots adsorbed on nanostructured TiO2 electrodes, together with photovoltaic characteristics. J. Appl. Phys. 2010, 108, 114304, doi:10.1063/1.3517066.
[49]
Hossain, M.A.; Jennings, J.R.; Koh, Z.Y.; Wang, Q. Carrier generation and collection in CdS/CdSe-sensitized SnO2 solar cells exhibiting unprecedented photocurrent densities. ACS Nano 2011, 5, 3172–3181, doi:10.1021/nn200315b.
[50]
Yang, Z.; Chen, C.; Liu, C.; Li, C.; Chang, H. Quantum dot-sensitized solar cells featuring CuS/CoS electrodes provide 4.1% efficiency. Adv. Energy Mater. 2011, 1, 259–264, doi:10.1002/aenm.201000029.
[51]
Salant, A.; Shalom, M.; Tachan, Z.; Buhbut, S.; Zaban, A.; Banin, U. Quantum rod-sensitized solar cell: Nanocrystal shape effect on the photovoltaic properties. Nano Lett. 2012, 12, 2095–2100, doi:10.1021/nl300356e.
[52]
Santra, P.K.; Kamat, P.V. Mn-doped quantum dot sensitized solar cells: A strategy to boost efficiency over 5%. J. Am. Chem. Soc. 2012, 134, 2508–2511, doi:10.1021/ja211224s.
Lee, H.J.; Bang, J.; Park, J.; Kim, S.; Park, S. Multilayered semiconductor (CdS/CdSe/ZnS)-sensitized TiO2 mesoporous solar cells: All prepared by successive ionic layer adsorption and reaction processes. Chem. Mater. 2010, 22, 5636–5643, doi:10.1021/cm102024s.
[55]
Lee, Y.; Lo, Y. Highly efficient quantum-dot-sensitized solar cell based on co-sensitization of CdS/CdSe. Adv. Funct. Mater. 2009, 19, 604–609, doi:10.1002/adfm.200800940.
[56]
Yu, X.; Liao, J.; Qiu, K.; Kuang, D.; Su, C. Dynamic study of highly efficient CdS/CdSe quantum dot-sensitized solar cells fabricated by electrodeposition. ACS Nano 2011, 5, 9494–9500, doi:10.1021/nn203375g.
[57]
Zhang, Q.; Guo, X.; Huang, X.; Huang, S.; Li, D.; Luo, Y.; Shen, Q.; Toyoda, T.; Meng, Q. Highly efficient CdS/CdSe-sensitized solar cells controlled by the structural properties of compact porous TiO2 photoelectrodes. Phys. Chem. Chem. Phys. 2011, 13, 4659–4667.
[58]
Zhu, G.; Pan, L.; Xu, T.; Sun, Z. CdS/CdSe-cosensitized TiO2 photoanode for quantum-dot-sensitized solar cells by a microwave-assisted chemical bath deposition method. ACS Appl. Mater. Interfaces 2011, 3, 3146–3151, doi:10.1021/am200648b.
Wise, F. Lead salt quantum dots: The limit of strong quantum confinement. Acc. Chem. Res. 2000, 33, 773–780, doi:10.1021/ar970220q.
[61]
Evans, C.M.; Guo, L.; Peterson, J. J.; Maccagnano-Zacher, S.; Krauss, T.D. Ultrabright PbSe magic-sized clusters. Nano Lett. 2008, 8, 2896–2899, doi:10.1021/nl801685a.
[62]
Etgar, L.; Moehl, T.; Gabriel, S.; Hickey, S.G.; Eychmueller, A.; Gr?tzel, M. Light energy conversion by mesoscopic PbS quantum dots/TiO2 heterojunction solar cells. ACS Nano 2012, 6, 3092–3099, doi:10.1021/nn2048153.
[63]
Plass, R.; Pelet, S.; Krueger, J.; Gratzel, M.; Bach, U. Quantum dot sensitization of organic-inorganic hybrid solar cells. J. Phys. Chem. B 2002, 106, 7578–7580, doi:10.1021/jp020453l.
[64]
Luther, J. M.; Law, M.; Beard, M.C.; Song, Q.; Reese, M.O.; Ellingson, R.J.; Nozik, A.J. Schottky solar cells based on colloidal nanocrystal films. Nano Lett. 2008, 8, 3488–3492, doi:10.1021/nl802476m.
[65]
Benehkohal, N.P.; Gonzalez-Pedro, V.; Boix, P.P.; Chavhan, S.; Tena-Zaera, R.; Demopoulos, G.P.; Mora-Sero, I. Colloidal PbS and PbSeS quantum dot sensitized solar cells prepared by electrophoretic deposition. J. Phys. Chem. C 2012, 116, 16391–16397.
Yang, Z.; Chang, H. CdHgTe and CdTe quantum dot solar cells displaying an energy conversion efficiency exceeding 2%. Solar Energy Mater. Solar Cells 2010, 94, 2046–2051, doi:10.1016/j.solmat.2010.06.013.
[73]
Chen, H.; Lai, C.; Wu, I.; Pan, H.; Chen, I.P.; Peng, Y.; Liu, C.; Chen, C.; Chou, P. Enhanced performance and air stability of 3.2% hybrid solar cells: how the functional polymer and CdTe nanostructure boost the solar cell efficiency. Adv. Mater. 2011, 23, 5451–5455.
[74]
Sun, S.; Liu, H.; Gao, Y.; Qin, D.; Chen, J. Controlled synthesis of CdTe nanocrystals for high performanced Schottky thin film solar cells. J. Mater. Chem. 2012, 22, 19207–19212, doi:10.1039/c2jm34280d.
[75]
Jasieniak, J.; MacDonald, B. I.; Watkins, S.E.; Mulvaney, P. Solution-processed sintered nanocrystal solar cells via layer-by-layer assembly. Nano Lett. 2011, 11, 2856–2864, doi:10.1021/nl201282v.
[76]
Yue, W.; Han, S.; Peng, R.; Shen, W.; Geng, H.; Wu, F.; Tao, S.; Wang, M. CuInS2 quantum dots synthesized by a solvothermal route and their application as effective electron acceptors for hybrid solar cells. J. Mater. Chem. 2010, 20, 7570–7578, doi:10.1039/c0jm00611d.
[77]
Chang, J.; Su, L.; Li, C.; Chang, C.; Lin, J. Efficient “green” quantum dot-sensitized solar cells based on Cu2S-CuInS2-ZnSe architecture. Chem. Commun. 2012, 48, 4848–4850, doi:10.1039/c2cc31229h.
[78]
Hu, X.; Zhang, Q.; Huang, X.; Li, D.; Luo, Y.; Meng, Q. Aqueous colloidal CuInS2 for quantum dot sensitized solar cells. J. Mater. Chem. 2011, 21, 15903–15905, doi:10.1039/c1jm12629f.
[79]
Yu, P.; Zhu, K.; Norman, A.G.; Ferrere, S.; Frank, A.J.; Nozik, A.J. Nanocrystalline TiO2 solar cells sensitized with InAs quantum dots. J. Phys. Chem. B 2006, 110, 25451–25454, doi:10.1021/jp064817b.
[80]
Tanabe, K.; Guimard, D.; Bordel, D.; Arakawa, Y. High-efficiency InAs/GaAs quantum dot solar cells by metalorganic chemical vapor deposition. Appl. Phys. Lett. 2012, 100, 193905, doi:10.1063/1.4714767.
[81]
Tanabe, K.; Watanabe, K.; Arakawa, Y. Flexible thin-film InAs/GaAs quantum dot solar cells. Appl. Phys. Lett. 2012, 100, 192102, doi:10.1063/1.4712597.
[82]
Peng, H.; Travas-Sejdic, J. Simple aqueous solution route to luminescent carbogenic dots from carbohydrates. Chem. Mater. 2009, 21, 5563–5565, doi:10.1021/cm901593y.
[83]
Yan, X.; Cui, X.; Li, B.; Li, L. Large, solution-processable graphene quantum dots as light absorbers for photovoltaics. Nano Lett. 2010, 10, 1869–1873, doi:10.1021/nl101060h.
Mirtchev, P.; Henderson, E.J.; Soheilnia, N.; Yip, C.M.; Ozin, G.A. Solution phase synthesis of carbon quantum dots as sensitizers for nanocrystalline TiO2 solar cells. J. Mater. Chem. 2012, 22, 1265–1269, doi:10.1039/c1jm14112k.
[86]
Wang, M.; Chamberland, N.; Breau, L.; Moser, J.; Humphry-Baker, R.; Marsan, B.; Zakeeruddin, S.M.; Gr?tzel, M. An organic redox electrolyte to rival triiodide/iodide in dye-sensitized solar cells. Nature Chem. 2010, 2, 385–389, doi:10.1038/nchem.610.
[87]
Burschka, J.; Brault, V.; Ahmad, S.; Breau, L.; Nazeeruddin, M.K.; Marsan, B.; Zakeeruddin, S.M.; Gr?tzel, M. Influence of the counter electrode on the photovoltaic performance of dye-sensitized solar cells using a disulfide/thiolate redox electrolyte. Energy Environ. Sci. 2012, 5, 6089–6097, doi:10.1039/c2ee03005e.
[88]
Cameron, P.J.; Peter, L.M.; Zakeeruddin, S.M.; Gratzel, M. Electrochemical studies of the Co(III)/Co(II)(dbbip)2 redox couple as a mediator for dye-sensitized nanocrystalline solar cells. Coord. Chem. Rev. 2004, 248, 1447–1453, doi:10.1016/j.ccr.2004.02.010.
[89]
Lim, C.; Im, S.H.; Rhee, J.H.; Lee, Y.H.; Kim, H.; Maiti, N.; Kang, Y.; Chang, J.A.; Nazeeruddin, M.K.; Gr?tzel, M.; et al. Hole-conducting mediator for stable Sb2S3-sensitized photoelectrochemical solar cells. J. Mater. Chem. 2012, 22, 1107–1111.
[90]
Ning, Z.; Yuan, C.; Tian, H.; Fu, Y.; Li, L.; Sun, L.; Agren, H. Type-II Colloidal quantum dot sensitized solar cells with a thiourea based organic redox couple. J. Mater. Chem. 2012, 22, 6032–6037, doi:10.1039/c2jm15857d.
[91]
Jovanovski, V.; Gonzalez-Pedro, V.; Gimenez, S.; Azaceta, E.; Cabanero, G.; Grande, H.; Tena-Zaera, R.; Mora-Sero, I.; Bisquert, J. A sulfide/polysulfide-based ionic liquid electrolyte for quantum dot-sensitized solar cells. J. Am. Chem. Soc. 2011, 133, 20156–20159.
[92]
Yum, J.; Baranoff, E.; Kessler, F.; Moehl, T.; Ahmad, S.; Bessho, T.; Marchioro, A.; Ghadiri, E.; Moser, J.; Yi, C.; et al. A cobalt complex redox shuttle for dye-sensitized solar cells with high open-circuit potentials. Nat. Commun. 2012, 3, 631, doi:10.1038/ncomms1655.
[93]
Li, B.; Wang, L.; Kang, B.; Wang, P.; Qiu, Y. Review of recent progress in solid-state dye-sensitized solar cells. Solar Energy Mater. Solar Cells 2006, 90, 549–573, doi:10.1016/j.solmat.2005.04.039.
[94]
Yum, J.; Chen, P.; Gr?tzel, M.; Nazeeruddin, M.K. Recent developments in solid-state dye-sensitized solar cells. ChemSusChem 2008, 1, 699–707, doi:10.1002/cssc.200800084.
[95]
Bach, U.; Lupo, D.; Comte, P.; Moser, J.; Weissortel, F.; Salbeck, J.; Spreitzer, H.; Gratzel, M. Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies. Nature 1998, 395, 583–585, doi:10.1038/26936.
[96]
Leijtens, T.; Ding, I.; Giovenzana, T.; Bloking, J.T.; McGehee, M.D.; Sellinger, A. Hole transport materials with low glass transition temperatures and high solubility for application in solid-state dye-sensitized solar cells. ACS Nano 2012, 6, 1455–1462, doi:10.1021/nn204296b.
[97]
Xu, C.; Wu, J.; Desai, U.V.; Gao, D. High-efficiency solid-state dye-sensitized solar cells based on TiO2-coated ZnO nanowire arrays. Nano Lett. 2012, 12, 2420–2424, doi:10.1021/nl3004144.
[98]
Ding, I.; Melas-Kyriazi, J.; Cevey-Ha, N.; Chittibabu, K.G.; Zakeeruddin, S.M.; Gr?tzel, M.; McGehee, M.D. Deposition of hole-transport materials in solid-state dye-sensitized solar cells by doctor-blading. Organ. Electron. 2010, 11, 1217–1222, doi:10.1016/j.orgel.2010.04.019.
[99]
Burschka, J.; Dualeh, A.; Kessler, F.; Baranoff, E.; Cevey-Ha, N.; Yi, C.; Nazeeruddin, M.K.; Gr?tzel, M. Tris(2-(1H-pyrazol-1-yl)pyridine)cobalt(III) as p-type dopant for organic semiconductors and its application in highly efficient solid-state dye-sensitized solar cells. J. Am. Chem. Soc. 2011, 133, 18042–18045.
Karageorgopoulos, D.; Stathatos, E.; Vitoratos, E. Thin ZnO nanocrystalline films for efficient quasi-solid state electrolyte quantum dot sensitized solar cells. J. Power Sources 2012, 219, 9–15, doi:10.1016/j.jpowsour.2012.07.034.
[103]
Barcelo, I.; Campina, J.M.; Lana-Villarreal, T.; Gomez, R. A solid-state CdSe quantum dot sensitized solar cell based on a quaterthiophene as a hole transporting material. Phys. Chem. Chem. Phys. 2012, 14, 5801–5807.
[104]
Wang, M.; Anghel, A.M.; Marsan, B.; Ha, N.C.; Pootrakulchote, N.; Zakeeruddin, S.M.; Gr?tzel, M. CoS supersedes Pt as efficient electrocatalyst for triiodide reduction in dye-sensitized solar cells. J. Am. Chem. Soc. 2009, 131, 15976–15997.
[105]
Ahmad, S.; Yum, J.; Butt, H.; Nazeeruddin, M.K.; Gr?tzel, M. Efficient platinum-free counter electrodes for dye-sensitized solar cell applications. ChemPhysChem 2010, 11, 2814–2819, doi:10.1002/cphc.201000612.
[106]
Guijarro, N.; Shen, Q.; Gimenez, S.; Mora-Sero, I.; Bisquert, J.; Lana-Villarreal, T.; Toyoda, T.; Gomez, R. Direct correlation between ultrafast injection and photoanode performance in quantum dot sensitized solar cells. J. Phys. Chem. C 2010, 114, 22352–22360.
[107]
Marcus, R.A. On the theory of oxidation-reduction reactions involving electron transfer. 1. J. Chem. Phys. 1956, 24, 966–978, doi:10.1063/1.1742723.
[108]
Sakata, T.; Hashimoto, K.; Hiramoto, M. New aspects of electron-transfer on semiconductor surface-dye-sensitization system. J. Phys. Chem. 1990, 94, 3040–3045, doi:10.1021/j100370a056.
[109]
Tvrdy, K.; Frantsuzov, P.A.; Kamat, P.V. Photoinduced electron transfer from semiconductor quantum dots to metal oxide nanoparticles. Proc. Natl. Acad. Sci. USA 2011, 108, 29–34.
[110]
Chen, H.; Ratner, M.A.; Schatz, G.C. Time-dependent theory of the rate of photo-induced electron transfer. J. Phys. Chem. C 2011, 115, 18810–18821, doi:10.1021/jp205262u.
[111]
Chen, H.; Ratner, M.A.; Schatz, G.C. Theoretical calculation of the photo-induced electron transfer rate between a gold atom and a gold cation solvated in CCl4. J. Photochem. Photobio. A 2011, 221, 143–147, doi:10.1016/j.jphotochem.2011.04.021.
[112]
Zidek, K.; Zheng, K.; Ponseca, C.S., Jr.; Messing, M.E.; Wallenberg, L.R.; Chabera, P.; Abdellah, M.; Sundstrom, V.; Pullerits, T. Electron transfer in quantum-dot-sensitized ZnO nanowires: Ultrafast time-resolved absorption and terahertz study. J. Am. Chem. Soc. 2012, 134, 12110–12117.
[113]
Green, M.A. Thin-film solar cells: Review of materials, technologies and commercial status. J. Mate. Sci.-Mater. Electron. 2007, 18, S15–S19, doi:10.1007/s10854-007-9177-9.