全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Nanomaterials  2013 

Separation of Short Single- and Double-Stranded DNA Based on Their Adsorption Kinetics Difference on Graphene Oxide

DOI: 10.3390/nano3020221

Keywords: graphene, DNA, adsorption, fluorescence, separation, gel electrophoresis

Full-Text   Cite this paper   Add to My Lib

Abstract:

Separation of short single- and double-stranded DNA typically requires gel electrophoresis followed by DNA extraction, which is a time consuming process. Graphene oxide adsorbs single-stranded DNA more quickly than double-stranded ones, allowing for selective removal of the former with a simple mixing and centrifugation operation. The effect of DNA length and salt on adsorption selectivity has been characterized and its application in DNA melting curve measurement has been demonstrated.

References

[1]  Storhoff, J.J.; Mirkin, C.A. Programmed materials synthesis with DNA. Chem. Rev. 1999, 99, 1849–1862, doi:10.1021/cr970071p.
[2]  Katz, E.; Willner, I. Nanobiotechnology: Integrated nanoparticle-biomolecule hybrid systems: Synthesis, properties, and applications. Angew. Chem. Int. Ed. 2004, 43, 6042–6108, doi:10.1002/anie.200400651.
[3]  Liu, J.; Cao, Z.; Lu, Y. Functional nucleic acid sensors. Chem. Rev. 2009, 109, 1948–1998, doi:10.1021/cr030183i.
[4]  Wang, K.M.; Tang, Z.W.; Yang, C.Y.J.; Kim, Y.M.; Fang, X.H.; Li, W.; Wu, Y.R.; Medley, C.D.; Cao, Z.H.; Li, J.; et al. Molecular engineering of DNA: Molecular beacons. Angew. Chem. Int. Ed. 2009, 48, 856–870, doi:10.1002/anie.200800370.
[5]  Lin, C.; Liu, Y.; Yan, H. Designer DNA nanoarchitectures. Biochemistry 2009, 48, 1663–1674, doi:10.1021/bi802324w.
[6]  Li, D.; Song, S.P.; Fan, C.H. Target-responsive structural switching for nucleic acid-based sensors. Acc. Chem. Res. 2010, 43, 631–641, doi:10.1021/ar900245u.
[7]  Chen, D.; Feng, H.; Li, J. Graphene oxide: Preparation, functionalization, and electrochemical applications. Chem. Rev. 2012, 112, 6027–6053, doi:10.1021/cr300115g.
[8]  Rothemund, P.W.K. Folding DNA to create nanoscale shapes and patterns. Nature 2006, 440, 297–302, doi:10.1038/nature04586.
[9]  Stuehmeier, F.; Welch, J.B.; Murchie, A.I.H.; Lilley, D.M.J.; Clegg, R.M. Global structure of three-way DNA junctions with and without additional unpaired bases: A fluorescence resonance energy transfer analysis. Biochemistry 1997, 36, 13530–13538, doi:10.1021/bi9702445.
[10]  Liu, J.; Lu, Y. FRET study of a trifluorophore-labeled DNAzyme. J. Am. Chem. Soc. 2002, 124, 15208–15216, doi:10.1021/ja027647z.
[11]  Tan, E.; Wilson, T.J.; Nahas, M.K.; Clegg, R.M.; Lilley, D.M.J.; Ha, T. A four-way junction accelerates hairpin ribozyme folding via a discrete intermediate. Proc. Natl. Acad. Sci. USA 2003, 100, 9308–9313, doi:10.1073/pnas.1233536100.
[12]  Li, J.; Lu, Y. A highly sensitive and selective catalytic DNA biosensor for lead ions. J. Am. Chem. Soc. 2000, 122, 10466–10467, doi:10.1021/ja0021316.
[13]  Nutiu, R.; Li, Y. Structure-switching signaling aptamers. J. Am. Chem. Soc. 2003, 125, 4771–4778, doi:10.1021/ja028962o.
[14]  Bhat, S.; Curach, N.; Mostyn, T.; Bains, G.S.; Griffiths, K.R.; Emslie, K.R. Comparison of methods for accurate quantification of DNA mass concentration with traceability to the international system of units. Anal. Chem. 2010, 82, 7185–7192, doi:10.1021/ac100845m.
[15]  Geim, A.K.; Novoselov, K.S. The rise of graphene. Nat. Mater. 2007, 6, 183–191, doi:10.1038/nmat1849.
[16]  Rao, C.N.R.; Sood, A.K.; Subrahmanyam, K.S.; Govindaraj, A. Graphene: The new two-dimensional nanomaterial. Angew. Chem. Int. Ed. 2009, 48, 7752–7777, doi:10.1002/anie.200901678.
[17]  Loh, K.P.; Bao, Q.; Eda, G.; Chhowalla, M. Graphene oxide as a chemically tunable platform for optical applications. Nat. Chem. 2010, 2, 1015–1024, doi:10.1038/nchem.907.
[18]  Lu, C.H.; Yang, H.H.; Zhu, C.L.; Chen, X.; Chen, G.N. A graphene platform for sensing biomolecules. Angew. Chem. Int. Ed. 2009, 48, 4785–4787, doi:10.1002/anie.200901479.
[19]  Tang, Z.W.; Wu, H.; Cort, J.R.; Buchko, G.W.; Zhang, Y.Y.; Shao, Y.Y.; Aksay, I.A.; Liu, J.; Lin, Y.H. Constraint of DNA on functionalized graphene improves its biostability and specificity. Small 2010, 6, 1205–1209, doi:10.1002/smll.201000024.
[20]  He, S.J.; Song, B.; Li, D.; Zhu, C.F.; Qi, W.P.; Wen, Y.Q.; Wang, L.H.; Song, S.P.; Fang, H.P.; Fan, C.H. A graphene nanoprobe for rapid, sensitive, and multicolor fluorescent DNA analysis. Adv. Funct. Mater. 2010, 20, 453–459, doi:10.1002/adfm.200901639.
[21]  Wu, M.; Kempaiah, R.; Huang, P.-J.J.; Maheshwari, V.; Liu, J. Adsorption and desorption of DNA on graphene oxide studied by fluorescently labeled oligonucleotides. Langmuir 2011, 27, 2731–2738, doi:10.1021/la1037926.
[22]  Huang, P.-J.J.; Kempaiah, R.; Liu, J. Synergistic pH effect for reversible shuttling aptamer-based biosensors between graphene oxide and target molecules. J. Mater. Chem. 2011, 21, 8991–8993, doi:10.1039/c1jm11702e.
[23]  Liu, J. Adsorption of DNA onto gold nanoparticles and graphene oxide: Surface science and applications. Phys. Chem. Chem. Phys. 2012, 14, 10485–10496, doi:10.1039/c2cp41186e.
[24]  Park, J.S.; Na, H.-K.; Min, D.-H.; Kim, D.-E. Desorption of single-stranded nucleic acids from graphene oxide by disruption of hydrogen bonding. Analyst 2013, 138, 1745–1749, doi:10.1039/c3an36493c.
[25]  Bi, S.; Zhao, T.; Luo, B. A graphene oxide platform for the assay of biomolecules based on chemiluminescence resonance energy transfer. Chem. Commun. 2012, 48, 106–108, doi:10.1039/c1cc15443e.
[26]  Lei, H.Z.; Mi, L.J.; Zhou, X.J.; Chen, J.J.; Hu, J.; Guo, S.W.; Zhang, Y. Adsorption of double-stranded DNA to graphene oxide preventing enzymatic digestion. Nanoscale 2011, 3, 3888–3892, doi:10.1039/c1nr10617a.
[27]  Liu, M.; Zhao, H.; Chen, S.; Yu, H.; Quan, X. Capture of double-stranded DNA in stacked-graphene: giving new insight into the graphene/DNA interaction. Chem. Commun. 2012, 48, 564–566, doi:10.1039/c1cc16429e.
[28]  Zhao, X. Self-assembly of DNA segments on graphene and carbon nanotube arrays in aqueous solution: A molecular simulation study. J. Phys. Chem. C 2011, 115, 6181–6189, doi:10.1021/jp110013r.
[29]  Wang, W.J.; Chen, C.L.; Qian, M.X.; Zhao, X.S. Aptamer biosensor for protein detection based on guanine-quenching. Sensor Actuat. B-Chem. 2008, 129, 211–217, doi:10.1016/j.snb.2007.07.125.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133