Separation of short single- and double-stranded DNA typically requires gel electrophoresis followed by DNA extraction, which is a time consuming process. Graphene oxide adsorbs single-stranded DNA more quickly than double-stranded ones, allowing for selective removal of the former with a simple mixing and centrifugation operation. The effect of DNA length and salt on adsorption selectivity has been characterized and its application in DNA melting curve measurement has been demonstrated.
Chen, D.; Feng, H.; Li, J. Graphene oxide: Preparation, functionalization, and electrochemical applications. Chem. Rev. 2012, 112, 6027–6053, doi:10.1021/cr300115g.
[8]
Rothemund, P.W.K. Folding DNA to create nanoscale shapes and patterns. Nature 2006, 440, 297–302, doi:10.1038/nature04586.
[9]
Stuehmeier, F.; Welch, J.B.; Murchie, A.I.H.; Lilley, D.M.J.; Clegg, R.M. Global structure of three-way DNA junctions with and without additional unpaired bases: A fluorescence resonance energy transfer analysis. Biochemistry 1997, 36, 13530–13538, doi:10.1021/bi9702445.
[10]
Liu, J.; Lu, Y. FRET study of a trifluorophore-labeled DNAzyme. J. Am. Chem. Soc. 2002, 124, 15208–15216, doi:10.1021/ja027647z.
[11]
Tan, E.; Wilson, T.J.; Nahas, M.K.; Clegg, R.M.; Lilley, D.M.J.; Ha, T. A four-way junction accelerates hairpin ribozyme folding via a discrete intermediate. Proc. Natl. Acad. Sci. USA 2003, 100, 9308–9313, doi:10.1073/pnas.1233536100.
[12]
Li, J.; Lu, Y. A highly sensitive and selective catalytic DNA biosensor for lead ions. J. Am. Chem. Soc. 2000, 122, 10466–10467, doi:10.1021/ja0021316.
[13]
Nutiu, R.; Li, Y. Structure-switching signaling aptamers. J. Am. Chem. Soc. 2003, 125, 4771–4778, doi:10.1021/ja028962o.
[14]
Bhat, S.; Curach, N.; Mostyn, T.; Bains, G.S.; Griffiths, K.R.; Emslie, K.R. Comparison of methods for accurate quantification of DNA mass concentration with traceability to the international system of units. Anal. Chem. 2010, 82, 7185–7192, doi:10.1021/ac100845m.
[15]
Geim, A.K.; Novoselov, K.S. The rise of graphene. Nat. Mater. 2007, 6, 183–191, doi:10.1038/nmat1849.
[16]
Rao, C.N.R.; Sood, A.K.; Subrahmanyam, K.S.; Govindaraj, A. Graphene: The new two-dimensional nanomaterial. Angew. Chem. Int. Ed. 2009, 48, 7752–7777, doi:10.1002/anie.200901678.
[17]
Loh, K.P.; Bao, Q.; Eda, G.; Chhowalla, M. Graphene oxide as a chemically tunable platform for optical applications. Nat. Chem. 2010, 2, 1015–1024, doi:10.1038/nchem.907.
Tang, Z.W.; Wu, H.; Cort, J.R.; Buchko, G.W.; Zhang, Y.Y.; Shao, Y.Y.; Aksay, I.A.; Liu, J.; Lin, Y.H. Constraint of DNA on functionalized graphene improves its biostability and specificity. Small 2010, 6, 1205–1209, doi:10.1002/smll.201000024.
[20]
He, S.J.; Song, B.; Li, D.; Zhu, C.F.; Qi, W.P.; Wen, Y.Q.; Wang, L.H.; Song, S.P.; Fang, H.P.; Fan, C.H. A graphene nanoprobe for rapid, sensitive, and multicolor fluorescent DNA analysis. Adv. Funct. Mater. 2010, 20, 453–459, doi:10.1002/adfm.200901639.
[21]
Wu, M.; Kempaiah, R.; Huang, P.-J.J.; Maheshwari, V.; Liu, J. Adsorption and desorption of DNA on graphene oxide studied by fluorescently labeled oligonucleotides. Langmuir 2011, 27, 2731–2738, doi:10.1021/la1037926.
[22]
Huang, P.-J.J.; Kempaiah, R.; Liu, J. Synergistic pH effect for reversible shuttling aptamer-based biosensors between graphene oxide and target molecules. J. Mater. Chem. 2011, 21, 8991–8993, doi:10.1039/c1jm11702e.
[23]
Liu, J. Adsorption of DNA onto gold nanoparticles and graphene oxide: Surface science and applications. Phys. Chem. Chem. Phys. 2012, 14, 10485–10496, doi:10.1039/c2cp41186e.
[24]
Park, J.S.; Na, H.-K.; Min, D.-H.; Kim, D.-E. Desorption of single-stranded nucleic acids from graphene oxide by disruption of hydrogen bonding. Analyst 2013, 138, 1745–1749, doi:10.1039/c3an36493c.
[25]
Bi, S.; Zhao, T.; Luo, B. A graphene oxide platform for the assay of biomolecules based on chemiluminescence resonance energy transfer. Chem. Commun. 2012, 48, 106–108, doi:10.1039/c1cc15443e.
[26]
Lei, H.Z.; Mi, L.J.; Zhou, X.J.; Chen, J.J.; Hu, J.; Guo, S.W.; Zhang, Y. Adsorption of double-stranded DNA to graphene oxide preventing enzymatic digestion. Nanoscale 2011, 3, 3888–3892, doi:10.1039/c1nr10617a.
[27]
Liu, M.; Zhao, H.; Chen, S.; Yu, H.; Quan, X. Capture of double-stranded DNA in stacked-graphene: giving new insight into the graphene/DNA interaction. Chem. Commun. 2012, 48, 564–566, doi:10.1039/c1cc16429e.
[28]
Zhao, X. Self-assembly of DNA segments on graphene and carbon nanotube arrays in aqueous solution: A molecular simulation study. J. Phys. Chem. C 2011, 115, 6181–6189, doi:10.1021/jp110013r.
[29]
Wang, W.J.; Chen, C.L.; Qian, M.X.; Zhao, X.S. Aptamer biosensor for protein detection based on guanine-quenching. Sensor Actuat. B-Chem. 2008, 129, 211–217, doi:10.1016/j.snb.2007.07.125.