全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Nanomaterials  2013 

Assembl y of Poly-3-Hexylthiophene Nano-Crystallites into Low Dimensional Structures Using Indandione Derivatives

DOI: 10.3390/nano3010107

Keywords: poly-3-hexylthiophene, directed self-assembly, indandione derivatives, nanofibers

Full-Text   Cite this paper   Add to My Lib

Abstract:

Conductive polymer poly-3-hexylthiophene (P3HT) needles were self-assembled using a second component (indandione derivatives) as a linking agent to enhance their long range alignment. The morphologies of the hybrid organic/organic materials were characterized by transmission electron microscopy (TEM). Both linear and branched structures could be produced, with the degree of branching depending upon the linker used. Incorporation of indandione derivatives broadened the UV absorbance band of P3HT without significant change to its photoluminescence. This hybrid material could open a promising avenue in photovoltaic applications due to its interesting morphologies and optical properties.

References

[1]  Lesourd, J. Solar photovoltaic systems: The economics of a renewable energy resource. Environ. Model. Softw. 2001, 16, 147–156, doi:10.1016/S1364-8152(00)00078-5.
[2]  Berson, S.; de Bettignies, R.; Bailly, S.; Guillerez, S. Poly(3-hexylthiophene) fibers for photovoltaic applications. Adv. Funct. Mater. 2007, 17, 1377–1384, doi:10.1002/adfm.200600922.
[3]  Nelles, D.A.; Yeo, G.W. Alternative splicing in stem cell self-renewal and differentiation. Adv. Exp. Med. Biol. 2010, 695, 92–104, doi:10.1007/978-1-4419-7037-4_7.
[4]  Mayer, A.C.; Scully, S.R.; Hardin, B.E.; Rowell, M.W.; Mcgehee, M.D. Polymer-based solar cells. Mater. Today 2007, 10, 28–33.
[5]  Vanlaeke, P.; Swinnen, A.; Haeldermans, I.; Vanhoyland, G.; Aernouts, T.; Cheyns, D.; Deibel, C.; D’Haen, J.; Heremans, P.; Poortmans, J.; et al. P3HT/PCBM bulk heterojunction solar cells: Relation between morphology and electro-optical characteristics. Sol. Energy Mater. Sol. Cells 2006, 90, 2150–2158, doi:10.1016/j.solmat.2006.02.010.
[6]  Canetti, M.; Bertini, F.; Scavia, G.; Porzio, W. Structural investigation on bulk poly(3-hexylthiophene): Combined SAXS, WAXD, and AFM studies. Eur. Polym. J. 2009, 45, 2572–2579, doi:10.1016/j.eurpolymj.2009.06.012.
[7]  Wu, Z.; Petzold, A.; Henze, T.; Thurn-Albrecht, T.; Lohwasser, R.H.; Sommer, M.; Thelakkat, M. Temperature and molecular weight dependent hierarchical equilibrium structures in semiconducting poly(3-hexylthiophene). Macromolecules 2010, 43, 4646–4653, doi:10.1021/ma902566h.
[8]  Campoy-Quiles, M.; Ferenczi, T.; Agostinelli, T.; Etchegoin, P.G.; Kim, Y.; Anthopoulos, T.D.; Stavrinou, P.N.; Bradley, D.D.C.; Nelson, J. Morphology evolution via self-organization and lateral and vertical diffusion in polymer: Fullerene solar cell blends. Nat. Mater. 2008, 7, 158–164, doi:10.1038/nmat2102.
[9]  Yang, B.H.; Shin, T.J.; Yang, L.; Cho, K.; Ryu, C.Y.; Bao, Z. Effect of mesoscale crystalline structure on the field-effect mobility of regioregular poly(3-hexyl thiophene) in thin-film transistors. Adv. Funct. Mater. 2005, 15, 671–676, doi:10.1002/adfm.200400297.
[10]  Ravirajan, P.; Peiró, A.M.; Nazeeruddin, M.K.; Graetzel, M.; Bradley, D.D.C.; Durrant, J.R.; Nelson, J. Hybrid polymer/zinc oxide photovoltaic devices with vertically oriented ZnO nanorods and an amphiphilic molecular interface layer. J. Phys. Chem. B 2006, 110, 7635–7639.
[11]  Lin, Y.; Lee, Y.; Chang, L.; Wu, J.; Chen, C. The influence of interface modifier on the performance of nanostructured ZnO/polymer hybrid solar cells. Appl. Phys. Lett. 2009, 94, 063308.
[12]  Kim, Y.G.; Thompson, B.C.; Ananthakrishnan, N.; Padmanaban, G. Variable band gap conjugated polymers for optoelectronic and redox applications. J. Mater. Res. 2005, 20, 3188–3198, doi:10.1557/jmr.2005.0396.
[13]  Wua, M.; Liaoa, H.; Loa, H.; Chena, S.; Lina, Y.; Yenb, W.; Zenga, T.; Chena, C.; Chenc, Y.; Su, W. Nanostructured polymer blends (P3HT/PMMA): Inorganic titania hybrid photovoltaic devices. Sol. Energy Mater. Sol. Cells 2009, 93, 961–965, doi:10.1016/j.solmat.2008.11.024.
[14]  Rutkis, M.; Jurgis, A.; Kampars, V.; Vembris, A.; Tokmakovs, A.; Kokars, V. Toward device applicable second order NLO polymer materials: Definition of the chromophore figure of merit. J. Phys. 2007, 93, 012028.
[15]  Jursenas, S.; Gulbinas, V.; Kuprionis, Z.; Kananavicius, R.; Kodis, G.; Gustavsson, T.; Mialocq, J.C.; Valkunas, L. Femtosecond excited-state dynamics in N,N-dimethylaminobenzylidene-1,3-indandione (DMABI) films. Synth. Met. 2000, 109, 169–172, doi:10.1016/S0379-6779(99)00222-2.
[16]  Gulbinas, V.; Karpicz, R.; Muzikante, I.; Valkunas, L. Fluorescence quenching by trapped charge carriers in N,N-dimethylaminobenzylidene 1,3-indandione films. Thin Solid Films 2010, 518, 3299–3304, doi:10.1016/j.tsf.2009.09.081.
[17]  Gulbinas, V.; Kodis, G.; Jursenas, S.; Valkunas, L.; Gruodis, A.; Mialocq, J.-C.; Pommeret, S.; Gustavsson, T. Charge transfer induced excited state twisting of N,N-Dimethylaminobenzylidene-1,3-indandione in solution. J. Phys. Chem. A 1999, 103, 3969–3980, doi:10.1021/jp9845468.
[18]  Valkunas, L.; Juodzbalis, D.; Urbas, A.; Gruodis, A.; Durandin, D.; Silinsh, E.; Klimkans, A.; Larsson, S. Visible fluorescence on IR excitation of polar dimethylaminobenzylidene 1,3-indandione crystals. Adv. Mater. Opt. Electr. 1993, 2, 221–232.
[19]  Kodis, G.; Gulbinas, V.; Valkūnas, L.; Jur??nas, S. Non-linear luminescence of dimethylaminobenzylidene-1,3-indandione solids. Adv. Mater. Opt. Electr. 1996, 6, 391–394, doi:10.1002/(SICI)1099-0712(199609)6:5/6<391::AID-AMO266>3.0.CO;2-O.
[20]  Castellano, O.; Herna, J.; Soscu, H. The topology of the charge distribution of the silanol-thiophene van der Waals complex: Ab initio and DFT study. J. Mol. Struct. 2000, 531, 315–321, doi:10.1016/S0166-1280(00)00471-1.
[21]  Yu, S.Y.; Garcia-Martinez, J.; Li, W.; Meitzner, G.D.; Iglesia, E. Temperature programmed desorption and infrared and X-ray absorption studies of thiophene adsorption, desorption and reactions on H-ZSM5 and Co/H-ZSM5. Phys. Chem. Chem. Phys. 2002, 4, 1241–1251, doi:10.1039/b108640p.
[22]  Kucsman, A.; Kapovits, I.; Czugler, M.; Parkanyi, L.; Kalman, A. Intramolacular sulfur oxygen interaction in organosulfur compounds with different valence states- an X-ray study of methyl-2-nitrobenzene sulfenate, methyl-2-N sulfinate, M sulfonate and 2-nitrobenzenesulfenyl chloride. J. Mol. Struct. 1989, 198, 339–353, doi:10.1016/0022-2860(89)80048-1.
[23]  Aida, G.-A.; Larrubia, M.A.; Ramirez, J.; Busca, G. FT-IR evidence of the interaction of benzothiophene with the hydroxyl groups of H-MFI and H-MOR zeolites. Vib. Spectrosc. 2006, 41, 42–47, doi:10.1016/j.vibspec.2005.12.008.
[24]  Van Bavel, S.S.; B?renklau, M.; de With, G.; Hoppe, H.; Loos, J. P3HT/PCBM bulk heterojunction solar cells: Impact of blend composition and 3D morphology on device performance. Adv. Funct. Mater. 2010, 20, 1458–1463, doi:10.1002/adfm.200902247.
[25]  Yazawa, K.; Inoue, Y.; Shimizu, T.; Tansho, M.; Asakawa, N. Molecular dynamics of regioregular poly(3-hexylthiophene) investigated by NMR relaxation and an interpretation of temperature dependent optical absorption. J. Phys. Chem. B 2010, 114, 1241–1248.
[26]  Xu, J.; Hu, J.; Liu, X.; Qiu, X.; Wei, Z. Stepwise self-assembly of P3HT/CdSe hybrid nanowires with enhanced photoconductivity. Macromol. Rapid Commun. 2009, 30, 1419–1423, doi:10.1002/marc.200900132.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133