Nanosheet-derived H x(Ni 1/3Co 1/3Mn 1/3)O 2 was prepared by restacking (Ni 1/3Co 1/3Mn 1/3)O 2 nanosheets with large or small lateral sizes and their electrochemical properties in a 1 M KOH aqueous solution; microstructural factors were compared with those of bulk H x(Ni 1/3Co 1/3Mn 1/3)O 2 (HNCM). The electrodes composed of small nanosheets exhibited very large capacitances of 1241 F·g ?1 (395 mAh·g ?1) at a current density of 50 mA·g ?1, and 430 F·g ?1 (100 mAh·g ?1) at a large current density of 1000 mA·g ?1. These large capacitances resulted from a heterogeneous layer structure with a large surface area and pore volume. The electrodes of large nanosheets, with a strongly interconnected microstructure and a surface area slightly larger than that of HNCM, exhibited good cycle stability and capacitances larger than that of HNCM. Microstructural control through the restacking of (Ni 1/3Co 1/3Mn 1/3)O 2 nanosheets improved the electrochemical properties of H x(Ni, Co, Mn)O 2.
References
[1]
Nishino, A. Capacitors: Operating principles, current market and technical trends. J. Power Sources 1996, 60, 137–147, doi:10.1016/S0378-7753(96)80003-6.
[2]
Simon, P.; Gogotsi, Y. Materials for electrochemical capacitors. Nat. Mater. 2008, 7, 845–854, doi:10.1038/nmat2297.
[3]
Faggioli, E.; Rena, P.; Danel, V.; Andrieu, X.; Mallant, R.; Kahlen, H. Supercapacitors for the energy management of electric vehicles. J. Power Sources 1999, 84, 261–269, doi:10.1016/S0378-7753(99)00326-2.
[4]
Zheng, J.P.; Cygan, P.J.; Jow, T.R. Hydrous ruthenium oxide as an electrode material for electrochemical capacitors. J. Electrochem. Soc. 1995, 142, 2699–2703, doi:10.1149/1.2050077.
[5]
Naoi, K.; Ishimoto, S.; Ogihara, N.; Nakagawa, Y.; Hatta, S. Encapsulation of nanodot ruthenium oxide into KB for electrochemical capacitors. J. Electrochem. Soc. 2009, 156, A52–A59.
[6]
Sugimoto, W.; Yokoshima, K.; Ohuchi, K.; Murakami, Y.; Takasu, Y. Fabrication of thin-film, flexible, and transparent electrodes composed of ruthenic acid nanosheets by electrophoretic deposition and application to electrochemical capacitors. J. Electrochem. Soc. 2006, 153, A255–A260.
[7]
Hu, C.-C.; Chen, W.-C. Effects of substrates on the capacitive performance of RuOx·nH2O and activated carbon-RuOx electrodes for supercapacitors. Electrochim. Acta 2004, 49, 3469–3477.
[8]
Chen, W.-C.; Hu, C.-C.; Wang, C.-C.; Min, C.-K. Electrochemical characterization of activated carbon-ruthenium oxide nanoparticles composites for supercapacitors. J. Power Sources 2004, 125, 292–298, doi:10.1016/j.jpowsour.2003.08.001.
[9]
Yang, Y.; Kim, D.; Yang, M.; Schmuki, P. Vertically aligned mixed V2O5-TiO2 nanotube arrays for supercapacitor applications. Chem. Commun. 2011, 47, 7746–7748, doi:10.1039/c1cc11811k.
Pang, S.C.; Anderson, M.A.; Chapman, T.W. Novel electrode materials for thin-film ultracapacitors: Comparison of electrochemical properties of sol-gel-derived and electrodeposited manganese dioxide. J. Electrochem. Soc. 2000, 147, 444–450.
[12]
Sivakkumar, S.R.; Ko, J.; Kim, D.; Kim, B.C.; Wallace, G.G. Performance evaluation of CNT/polypyrrole/MnO2 composite electrodes for electrochemical capacitors. Electrochim. Acta 2007, 52, 7377–7385, doi:10.1016/j.electacta.2007.06.023.
[13]
Toupin, M.; Brousse, T.; Belanger, D. Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor. Chem. Mater. 2004, 16, 3184–3190, doi:10.1021/cm049649j.
Xu, C.-L.; Bao, S.-J.; Kong, L.-B.; Li, H.; Li, H.-L. Highly ordered MnO2 nanowire array thin films on Ti/Si substrate as an electrode for electrochemical capacitor. J. Solid State Chem. 2006, 179, 1351–1355, doi:10.1016/j.jssc.2006.01.058.
[16]
Jeong, Y.U.; Manthiram, A. Nanocrystalline manganese oxides for electrochemical capacitors with neutral electrolytes. J. Electrochem. Soc. 2002, 149, A1419–A1422, doi:10.1149/1.1511188.
[17]
Reddy, R.N.; Reddy, R.G. Sol-gel MnO2 as an electrode material for electrochemical capacitors. J. Power Sources 2003, 124, 330–337, doi:10.1016/S0378-7753(03)00600-1.
[18]
Yuan, C.; Su, L.; Gao, B.; Zhang, X. Enhanced electrochemical stability and charge storage of MnO2/carbon nanotubes composite modified by polyaniline coating layer in acidic electrolytes. Electrochim. Acta 2008, 53, 7039–7047, doi:10.1016/j.electacta.2008.05.037.
[19]
Jang, H.; Suzuk, S.; Miyayama, M. Self-reassembled MnO2 nanosheets for electrochemical capacitors in neutral aqueous solution. J. Electrochem. Soc. 2012, 159, A1425–A1430, doi:10.1149/2.028209jes.
[20]
Jang, H.; Suzuki, S.; Miyayama, M. Electrode properties of nanosheet-derived MnO2 for electrochemical capacitors. ECS Trans. 2011, 33, 145–154, doi:10.1149/1.3565510.
[21]
Yano, M.; Suzuki, S.; Miyayama, M. MnO2 nanosheets thin-film electrodes for electrochemical capacitors. ECS Trans. 2011, 35, 187–194, doi:10.1149/1.3654217.
[22]
Kintsu, Y.; Suzuki, S.; Miyayama, M. Electrochemical properties of Ba(MnPO4)2·H2O in alkaline aqueous electrolytes. Ceramic Int. 2013. in press.
[23]
Xionghan, F.; Wenfeng, T.; Fan, L.; Qiaoyun, H.; Xiangwen, L. Pathways of birnessite formation in alkali medium. Sci. China Ser. D 2005, 48, 1438–1451, doi:10.1360/03yd0280.
[24]
Hem, J.D. Redox processes at surfaces of manganese oxide and their effects on aqueous metal ions. Chem. Geol. 1979, 21, 199–218, doi:10.1016/0009-2541(78)90045-1.
[25]
McBreen, J. The electrochemistry of β-MnO2 and γ-MnO2 in alkaline electrolyte. Electrochim. Acta 1975, 20, 221–225, doi:10.1016/0013-4686(75)85028-6.
[26]
Kang, S.-H.; Kim, J.; Stoll, M.E.; Abraham, D.; Amine, K. Layered Li(Ni0.5?xMn0.5?xM2x′)O2 (M′=Co, Al, Ti; x = 0, 0.025) cathode materials for Li-ion rechargeable batteries. J. Power Sources 2002, 112, 41–48, doi:10.1016/S0378-7753(02)00360-9.
[27]
Ngala, J.K.; Chernova, N.A.; Ma, M.; Mamak, M.; Zavalij, P.Y.; Whittingham, M.S. The synthesis, characterization and electrochemical behavior of the layered LiNi0.4Mn0.4Co0.2O2 compound. J. Mater. Chem. 2004, 14, 214–220, doi:10.1039/b309834f.
[28]
Lee, M.-H.; Kang, Y.-J.; Myung, S.-T.; Sung, Y.-K. Synthetic optimization of Li[Ni1/3Co1/3Mn1/3]O2 via co-precipitation. Electrochim. Acta 2004, 50, 939–948, doi:10.1016/j.electacta.2004.07.038.
[29]
Park, S.H.; Yoon, C.S.; Kang, S.G.; Kim, H.-S.; Moon, S.-I.; Sun, Y.-K. Synthesis and structural characterization of layered Li[Ni1/3Co1/3Mn1/3]O2 cathode materials by ultrasonic spray pyrolysis method. Electrochim. Acta 2004, 49, 557–563, doi:10.1016/j.electacta.2003.09.009.
[30]
Idemoto, Y.; Matsui, T. Thermodynamic stability, crystal structure, and cathodic performance of Lix(Ni1/3Co1/3Mn1/3)O2 dependent on the synthetic process and Li content. Solid State Ionics 2008, 179, 625–635, doi:10.1016/j.ssi.2008.03.024.
[31]
Shaju, K.M.; Subba Rao, G.V.; Chowdari, B.V.R. Performance of layered Li(Ni1/3Co1/3Mn1/3)O2 as cathode for Li-ion batteries. Electrochim. Acta 2002, 48, 145–151.
[32]
Koyama, Y.; Tanaka, I.; Adachi, H.; Makimura, Y.; Ohzuku, T. Crystal and electronic structures of superstructural Li1-x[Ni1/3Co1/3Mn1/3]O2 (0 ≤ x ≤ 1). J. Power Sources 2003, 119–121, 644–648, doi:10.1016/S0378-7753(03)00194-0.
[33]
Kim, J.-M.; Chung, H.-T. The first cycle characteristics of Li[Ni1/3Co1/3Mn1/3]O2 charged up to 4.7 V. Electrochim. Acta 2004, 49, 937–944, doi:10.1016/j.electacta.2003.10.005.
[34]
Liu, J.; Qiu, W.; Yu, L.; Zhao, H.; Li, T. Synthesis and electrochemical characterization of layered Li(Ni1/3Co1/3Mn1/3)O2 cathode materials by low-temperature solid-state reaction. J. Alloys Compd. 2008, 449, 326–330, doi:10.1016/j.jallcom.2006.01.149.
[35]
Yano, M.; Suzuki, S.; Miyayama, M.; Ohgaki, M. Electrochemical properties of layer-structured Hx(Ni1/3Co1/3Mn1/3)O2 for electrochemical capacitors in alkaline aqueous solutions. J. Asian Ceram. Soc. 2013. submitted for publication.
[36]
Suzuki, S.; Takahashi, S.; Sato, K.; Miyayama, M. High-rate electrode properties of Li-Mn-oxide synthesized by reassembly of MnO2 nanosheets for Li-ion battery. Key Eng. Mater. 2006, 320, 223–226, doi:10.4028/www.scientific.net/KEM.320.223.
[37]
Suzuki, S.; Miyayama, M. Lithium intercalation properties of reassembled titanate/carbon composites. J. Electrochem. Soc. 2007, 154, A438–A443, doi:10.1149/1.2711080.
[38]
Omomo, Y.; Sasaki, T.; Wang, L.; Watanabe, M. Redoxable nanosheet crystallites of MnO2 derived via delamination of layered manganese oxide. J. Am. Chem. Soc. 2003, 125, 3568–3575, doi:10.1021/ja021364p.
[39]
Sakai, N.; Ebina, Y.; Takada, K.; Sasaki, T. Electronic band structure of titania semiconductor nanosheets revealed by electrochemical and photoelectrochemical studies. J. Am. Chem. Soc. 2004, 126, 5851–5858, doi:10.1021/ja0394582.
[40]
Liu, Z.-H.; Ooi, K.; Kanoh, H.; Tang, W.P.; Tomida, T. Swelling and delamination behaviors of birnessite-type manganese oxide by intercalation of tetraalkylammonium ions. Langmuir 2000, 16, 4154–4164, doi:10.1021/la9913755.
[41]
Oh, E.-J.; Kim, T.W.; Lee, K.M.; Song, M.-S.; Jee, A.-Y.; Lim, S.T.; Ha, H.-W.; Lee, M.; Choy, J.-H.; Hwang, S.-J. Unilamellar nanosheet of layered manganese cobalt nickel oxide and its heterolayered film with polycations. ACS Nano 2010, 4, 4437–4444, doi:10.1021/nn100286u.
[42]
Benhaddad, L.; Makhloufi, L.; Messaoudi, B.; Takenouti, H. Reactivity of nanostructured MnO2 in alkaline medium studied with a micro-cavity electrode: Effect of synthesizing temperature. Appl. Mater. Interfaces 2009, 1, 424–432, doi:10.1021/am800118y.
[43]
Kozawa, A.; Yeager, J.F. The cathodic reduction mechanism of electrolytic manganese dioxide in alkaline electrolyte. J. Electrochem. Soc. 1965, 112, 959–963, doi:10.1149/1.2423350.
[44]
Kozawa, A.; Yeager, J.F. Cathodic reduction mechanism of MnOOH to Mn(OH)2 in alkaline electyrolyte. J. Electrochem. Soc. 1968, 115, 1003–1007, doi:10.1149/1.2410843.
[45]
Zhang, Y.; Zhou, Z.; Yan, J. Electrochemical behaviour of Ni(OH)2 ultrafine powder. J. Power Sources 1998, 75, 283–287, doi:10.1016/S0378-7753(98)00111-6.
[46]
Gupta, V.; Kusahara, T.; Toyoma, H.; Gupta, S.; Miura, N. Potentiostatically deposited nanostructured α-Co(OH)2: A high performance electrode material for redox capacitors. Electrochem. Commun. 2007, 9, 2315–2319, doi:10.1016/j.elecom.2007.06.041.
[47]
Atlung, S.; Jacobsen, T. On the ac-impedance of electroactive powders. γ-manganese dioxide. Electrochim. Acta 1976, 21, 575–584, doi:10.1016/0013-4686(76)85152-3.
[48]
Qu, D. Application of a.c. impedance technique to the study of the proton diffusion process in the porous MnO2 electrode. Electrochim. Acta 2003, 48, 1675–1684, doi:10.1016/S0013-4686(03)00146-4.
[49]
Sakamoto, K.; Hirayama, M.; Konishi, H.; Sonoyama, N.; Dupre, N.; Guyomard, D.; Tamura, K.; Mizuki, J.; Kanno, R. Structural changes in surface and bulk LiNi0.5Mn0.5O2 during electrochemical reaction on epitaxial thin-film electrodes characterized by in situ X-ray scattering. Phys. Chem. Chem. Phys. 2010, 12, 3815–3823, doi:10.1039/b920271d.