全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Animals  2013 

Use of Anecdotal Occurrence Data in Species Distribution Models: An Example Based on the White-Nosed Coati (Nasua narica) in the American Southwest

DOI: 10.3390/ani3020327

Keywords: anecdotal data, climate, evidentiary standards, ecological niche models, Madrean, maximum entropy, occurrence records, species distribution models

Full-Text   Cite this paper   Add to My Lib

Abstract:

Species distributions are usually inferred from occurrence records. However, these records are prone to errors in spatial precision and reliability. Although influence of spatial errors has been fairly well studied, there is little information on impacts of poor reliability. Reliability of an occurrence record can be influenced by characteristics of the species, conditions during the observation, and observer’s knowledge. Some studies have advocated use of anecdotal data, while others have advocated more stringent evidentiary standards such as only accepting records verified by physical evidence, at least for rare or elusive species. Our goal was to evaluate the influence of occurrence records with different reliability on species distribution models (SDMs) of a unique mammal, the white-nosed coati ( Nasua narica) in the American Southwest. We compared SDMs developed using maximum entropy analysis of combined bioclimatic and biophysical variables and based on seven subsets of occurrence records that varied in reliability and spatial precision. We found that the predicted distribution of the coati based on datasets that included anecdotal occurrence records were similar to those based on datasets that only included physical evidence. Coati distribution in the American Southwest was predicted to occur in southwestern New Mexico and southeastern Arizona and was defined primarily by evenness of climate and Madrean woodland and chaparral land-cover types. Coati distribution patterns in this region suggest a good model for understanding the biogeographic structure of range margins. We concluded that occurrence datasets that include anecdotal records can be used to infer species distributions, providing such data are used only for easily-identifiable species and based on robust modeling methods such as maximum entropy. Use of a reliability rating system is critical for using anecdotal data.

References

[1]  McKelvey, K.S.; Aubry, K.B.; Schwartz, M.K. Using anecdotal occurrence data for rare or elusive species: The illusion of reality and a call for evidentiary standards. Bioscience 2008, 58, 549–555, doi:10.1641/B580611.
[2]  Frey, J.K. Inferring species distributions in the absence of occurrence records: An example considering wolverine (Gulo gulo) and canada lynx (Lynx canadensis) in New Mexico. Biol. Conserv. 2006, 130, 16–24, doi:10.1016/j.biocon.2005.11.029.
[3]  Baldwin, R.A. Use of maximum entropy modeling in wildlife research. Entropy 2009, 11, 854–866, doi:10.3390/e11040854.
[4]  Elith, J.; Graham, C.H.; Anderson, R.P.; Dudik, M.; Ferrier, S.; Guisan, A.; Hijmans, R.J.; Huettmann, F.; Leathwick, J.R.; Lehmann, A.; et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 2006, 29, 129–151, doi:10.1111/j.2006.0906-7590.04596.x.
[5]  Elith, J.; Graham, C.H. Do they? How do they? Why do they differ? On finding reasons for differing performances of species distribution models. Ecography 2009, 32, 66–77, doi:10.1111/j.1600-0587.2008.05505.x.
[6]  Aubry, K.B.; Jagger, L.A. Importance of obtaining verifiable occurrence data on forest carnivores and an interactive website for archiving results from standardized surveys. In Martes in Carnivore Communities; Santos-Reis, M., Birks, D.S., O’Doherty, E.C., Proulx, G., Eds.; Alpha Wildlife Publications: Sherwood Park, AB, Canada, 2006; pp. 159–176.
[7]  Braunisch, V.; Suchant, R. Predicting species distributions based on incomplete survey data: The trade-off between precision and scale. Ecography 2010, 33, 826–840, doi:10.1111/j.1600-0587.2009.05891.x.
[8]  Pearson, R.G.; Raxworthy, C.J.; Nakamura, M.; Peterson, A.T. Predicting species distributions from small numbers of occurrence records: A test case using cryptic geckos in madagascar. J. Biogeogr. 2007, 34, 102–117.
[9]  Hernandez, P.A.; Franke, I.; Herzog, S.K.; Pacheco, V.; Paniagua, L.; Quintana, H.L.; Soto, A.; Swenson, J.J.; Tovar, C.; Valqui, T.H.; et al. Predicting species distributions in poorly-studied landscapes. Biodiv. Conserv. 2008, 17, 1353–1366, doi:10.1007/s10531-007-9314-z.
[10]  Wisz, M.S.; Hijmans, R.J.; Li, J.; Peterson, A.T.; Graham, C.H.; Guisan, A. NCEAS Predicting Species Distributions Working Group. Effects of sample size on the performance of species distribution models. Divers. Distrib. 2008, 14, 763–773, doi:10.1111/j.1472-4642.2008.00482.x.
[11]  Graham, C.H.; Elith, J.; Hijmans, R.J.; Guisan, A.; Peterson, A.T.; Loiselle, B.A. NCEAS Species Distribution Modeling Group. The influence of spatial errors in species occurrence data used in distribution models. J. Appl. Ecol. 2008, 45, 239–247.
[12]  Lozier, J.D.; Aniello, P.; Hickerson, M.J. Predicting the distribution of Sasquatch in western North America: Anything goes with ecological niche modelling. J. Biogeogr. 2009, 36, 1623–1627, doi:10.1111/j.1365-2699.2009.02152.x.
[13]  Aubry, K.B.; Houston, D.B. Distribution and status of the fisher (martes pennanti) in washington. Northwestern Naturalist 1992, 73, 69–79, doi:10.2307/3536711.
[14]  Aubry, K.B.; Lewis, J.C. Extirpation and reintroduction of fishers (Martes pennanti) in Oregon: Implications for their conservation in the pacific states. Biol. Conserv. 2003, 114, 79–90, doi:10.1016/S0006-3207(03)00003-X.
[15]  Gompper, M.E. Nasua narica. Mammal. Species 1995, 487, 1–10, doi:10.2307/3504195.
[16]  Cahalane, V.H. Mammals of the Chiricahua Mountains, Cochise County, Arizona. J. Mammal. 1939, 20, 418–440, doi:10.2307/1374590.
[17]  Taylor, W.P. Coati added to the list of United States mammals. J. Mammal. 1934, 15, 317–318.
[18]  Tabor, F.W. Range of the coati in the United States. J. Mammal. 1940, 21, 11–14, doi:10.2307/1374651.
[19]  Wallmo, O.C.; Gallizioli, S. Status of the coati in Arizona. J. Mammal. 1954, 35, 48–54, doi:10.2307/1376072.
[20]  Wetherhill, M.A. Occurrence of coati in northern Arizona. J. Mammal. 1957, 38, 123, doi:10.2307/1376485.
[21]  Kaufmann, J.H.; Lanning, D.V.; Poole, S.E. Current status and distribution of coati in United States. J. Mammal. 1976, 57, 621–637, doi:10.2307/1379435.
[22]  Hoffmeister, D.F. Mammals of Arizona; University of Arizona Press: Tucson, AZ, USA, 1986; p. 602.
[23]  Brown, D.E.; Davis, R. One hundred years of vicissitude: Terrestrial bird and mammal distribution changes in the american southwest, 1890–1990. In Biodiversity and Management of the Madrean Archipelago: The Sky Islands of Southwestern United States and Northwestern Mexico. 1994 September 19–23;Tucson, AZ; General Technical Report RM-GTR-264; Department of Agriculture, Forest Service, Rocky Mountain Forest and Range Experiment Station: Fort Collins, CO, USA, 1995; p. 669.
[24]  Taber, F.W. Range of the coati in the United States. J. Mammal. 1940, 21, 11–14, doi:10.2307/1374651.
[25]  Davis, R.; Callahan, J.R. Post-pleistocene dispersal in the Mexican vole (Microtus mexicanus): An example of an apparent trend in the distribution of southwestern mammals. Great Basin Naturalist 1992, 52, 262–268.
[26]  Cook, J.A. The Mammals of the Animas Mountains and Adjacent Areas, Hidalgo County, New Mexico. Occasional Papers; Museum of Southwestern Biology, University of New Mexico: Albuquerque, NM, USA, 1986; Volume 4, pp. 1–45.
[27]  Feeley, K.J.; Silman, M.R. The data void in modeling current and future distributions of tropical species. Global Change Biol. 2011, 17, 626–630, doi:10.1111/j.1365-2486.2010.02239.x.
[28]  Tingley, R.; Herman, T.B. Land-cover data improve bioclimatic models for anurans and turtles at a regional scale. J. Biogeogr. 2009, 36, 1656–1672, doi:10.1111/j.1365-2699.2009.02117.x.
[29]  Calkins, M.T.; Beever, E.A.; Boykin, K.G.; Frey, J.K.; Andersen, M.C. Not-so-splendid isolation: Modeling climate-mediated range collapse of a montane mammal ochotona princeps across numerous ecoregions. Ecography 2012, 35, 780–791, doi:10.1111/j.1600-0587.2011.07227.x.
[30]  Hijmans, R.J.; Cameron, S.E.; Parra, J.L.; Jones, P.G.; Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 2005, 25, 1965–1978, doi:10.1002/joc.1276.
[31]  USGS National Gap Analysis Program, Provisional Digital Land Cover Map for the Southwestern United States. Version 1.0, RS/GIS Laboratory, College of Natural Resources, Utah State University, Logan, UT, USA, 2004.
[32]  USGS, National Elevation Dataset, U.S. Geological Survey, Washington, DC, USA, 1999.
[33]  Files, T.L. Census 2000 Tiger/Line Files. (Machine-Readable Data Files), U.S. Census Bureau, Washington, DC, USA, 2000.
[34]  USEP Agency, National Hydrography Dataset Plus. Version 1.0.; 2006 ed. U.S. Environmental Protection Agency, Washington, DC, USA, 2006.
[35]  Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 2006, 190, 231–259, doi:10.1016/j.ecolmodel.2005.03.026.
[36]  Phillips, S.J.; Dudik, M. Modeling of species distributions with maxent: New extensions and a comprehensive evaluation. Ecography 2008, 31, 161–175, doi:10.1111/j.0906-7590.2008.5203.x.
[37]  Hernandez, P.A.; Graham, C.H.; Master, L.L.; Albert, D.L. The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography 2006, 29, 773–785, doi:10.1111/j.0906-7590.2006.04700.x.
[38]  Fielding, A.H.; Bell, J.F. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ. Conserv. 1997, 24, 38–49, doi:10.1017/S0376892997000088.
[39]  Warren, D.L.; Seifert, S.N. Ecological niche modeling in maxent: The importance of model complexity and the performance of model selection criteria. Ecol. Appl. 2011, 21, 335–342, doi:10.1890/10-1171.1.
[40]  Pearce, J.; Ferrier, S. Evaluating the predictive performance of habitat models developed using logistic regression. Ecol. Model. 2000, 133, 225–245, doi:10.1016/S0304-3800(00)00322-7.
[41]  The R Development Core Team. R: A Language and Environment for Statistical Computing. Version 2.12.0, 2010. Available online: http://www.r-project.org/ (accessed on 5 April 2013).
[42]  Hanley, J.A.; McNeil, B.J. A method of comparing the areas under the receiver operating characteristic curves derived from the same cases. Radiology 1983, 148, 839–843.
[43]  Raxworthy, C.J.; Martinez-Meyer, E.; Horning, N.; Nussbaum, R.A.; Schneider, G.E.; Ortega-Huerta, M.A.; Peterson, A.T. Predicting distributions of known and unknown reptile species in Madagascar. Nature 2003, 426, 837–841.
[44]  Jackson, C.R.; Robertson, M.P. Predicting the potential distribution of an endangered cryptic subterranean mammal from few occurrence records. J. Nat. Conserv. 2011, 19, 87–94, doi:10.1016/j.jnc.2010.06.006.
[45]  Muldavin, E.H.; DeVelice, R.L.; Ronco, F., Jr. A Classification of Forest Habitat Types Southern Arizona and Portions of the Colorado Plateau; USDA, Forest Service, Rocky Mountain Forest and Range Experiment Station: Fort Collins, CO, USA, 1996; p. 130.
[46]  Brown, D.E. Biotic Communities Southwestern United States and Northwestern Mexico; University of Utah Press: Salt Lake City, UT, USA, 1994; p. 342.
[47]  Hass, C.C. Home-range dynamics of white-nosed coatis in southeastern Arizona. J. Mammal. 2002, 83, 934–946, doi:10.1644/1545-1542(2002)083<0934:HRDOWN>2.0.CO;2.
[48]  Lanning, D.V. Density and movements of the coati in Arizona. J. Mammal. 1976, 57, 609–611, doi:10.2307/1379318.
[49]  McColgin, M.E. Sociality and Genetics of a Southeastern Arizona Coati (Nasua narica) Population; Purdue University: West Lafayette, IN, USA, 2006.
[50]  Valenzuela, D.; Macdonald, D.W. Home-range use by white-nosed coatis (Nasua narica): Limited water and a test of the resource dispersion hypothesis. J. Zool. 2002, 258, 247–256, doi:10.1017/S0952836902001358.
[51]  Hengeveld, R. Dynamic Biogeography; Cambridge University Press: Cambridge, UK, 1990; p. 192.
[52]  Pulliam, H.R. On the relationship between niche and distribution. Ecol. Lett. 2000, 3, 349–361.
[53]  Gaston, K.J. The Structure and Dynamics of Geographic Ranges; Oxford University Press: New York, NY, USA, 2003; p. 280.
[54]  Ratnayeke, S.; Bixler, A.; Gitleman, J.L. Home range movements of solitary, reprodutive female coatis, Nasua narica, in south-eastern Arizona. J. Zool. 1994, 233, 322–326, doi:10.1111/j.1469-7998.1994.tb08594.x.
[55]  Gompper, M.E.; Gittleman, J.L.; Wayne, R.K. Dispersal, philopatry, and genetic relatedness in a social carnivore: Comparing males and females. Mol. Ecol. 1998, 7, 157–163, doi:10.1046/j.1365-294x.1998.00325.x.
[56]  Hass, C.C.; Valenzuela, D. Anti-predator benefits of group living in white-nosed coatis (Nasua narica). Behav. Ecol. Sociobiol. 2002, 51, 570–578, doi:10.1007/s00265-002-0463-5.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413