全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Improving remote sensing flood assessment using volunteered geographical data

DOI: 10.5194/nhess-13-669-2013

Full-Text   Cite this paper   Add to My Lib

Abstract:

A new methodology for the generation of flood hazard maps is presented fusing remote sensing and volunteered geographical data. Water pixels are identified utilizing a machine learning classification of two Landsat remote sensing scenes, acquired before and during the flooding event as well as a digital elevation model paired with river gage data. A statistical model computes the probability of flooded areas as a function of the number of adjacent pixels classified as water. Volunteered data obtained through Google news, videos and photos are added to modify the contour regions. It is shown that even a small amount of volunteered ground data can dramatically improve results.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133