全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Animals  2013 

Early Results of Three-Year Monitoring of Red Wood Ants’ Behavioral Changes and Their Possible Correlation with Earthquake Events

DOI: 10.3390/ani3010063

Keywords: red wood ants’ behavioral changes, earthquakes, long-term in situ monitoring, automated image evaluation routine, statistical analyses, tectonically active faults

Full-Text   Cite this paper   Add to My Lib

Abstract:

Short-term earthquake predictions with an advance warning of several hours or days are currently not possible due to both incomplete understanding of the complex tectonic processes and inadequate observations. Abnormal animal behaviors before earthquakes have been reported previously, but create problems in monitoring and reliability. The situation is different with red wood ants (RWA; Formica rufa-group (Hymenoptera: Formicidae)). They have stationary mounds on tectonically active, gas-bearing fault systems. These faults may be potential earthquake areas. For three years (2009–2012), two red wood ant mounds ( Formica rufa-group), located at the seismically active Neuwied Basin (Eifel, Germany), have been monitored 24/7 by high-resolution cameras with both a color and an infrared sensor. Early results show that ants have a well-identifiable standard daily routine. Correlation with local seismic events suggests changes in the ants’ behavior hours before the earthquake: the nocturnal rest phase and daily activity are suppressed, and standard daily routine does not resume until the next day. At present, an automated image evaluation routine is being applied to the more than 45,000 hours of video streams. Based on this automated approach, a statistical analysis of the ants’ behavior will be carried out. In addition, other parameters (climate, geotectonic and biological), which may influence behavior, will be included in the analysis.

References

[1]  Fletcher, L.E.; Christensen, I.A.; Liberda, J.J.; Rojas, J.I.; Borrero del Pino, C. Methods of Multivariable Earthquake Precursor Analysis and a Proposed Prototype Earthquake Early Warning System. In Proceeding of the International Space University Summer Session Program, Beijing, China, 25 June–24 August 2007; pp. 1–11.
[2]  van Dam, J.W.; Horton, W.; Tsintsadze, N.L.; Kaladze, T.D.; Garner, T.W.; Tsamalashvili, L.V. Some physical mechanisms of precursors to earthquakes. J. Plasma Fusion Res. 2009, 8, 199–202.
[3]  Yasuokaa, Y.; Igarashib, G.; Ishikawac, T.; Tokonamic, S.; Shinogia, M. Evidence of precursor phenomena in the Kobe earthquake obtained from atmospheric radon concentration. Appl. Geochem. 2006, 21, 1064–1072, doi:10.1016/j.apgeochem.2006.02.019.
[4]  Schaal, R.B. An evaluation of the animal-behavior theory for earthquake prediction. Calif. Geol. 1988, 41, 41–45.
[5]  Kirschvink, J.L. Earthquake prediction by animals: Evolution and sensory perception. Bull. Seism. Soc. Am. 2000, 90, 312–323, doi:10.1785/0119980114.
[6]  Ikeya, M.; Yamanaka, C.; Mattsuda, T.; Sasaoka, H.; Ochiai, H.; Huang, Q.H.; Ohtani, N.; Komuranani, T.; Ohta, M.; Ohno, Y.; Nakagawa, T. Electromagnetic pulses generated by compression of granitic rocks and animal behaviour. Episodes 2000, 23, 262–265.
[7]  Bhargava, N.; Katiyar, V.K.; Sharma, M.L.; Pradhan, P. Earthquake prediction through animal behavior: A review. Indian J. Biomech. 2009, 7-8, 159–165.
[8]  Schreiber, U.; Brennholt, N.; Simon, J. Gas permeable deep reaching fracture zones encourage site selection of ants. Ecol. Ind. 2009, 9, 508–517, doi:10.1016/j.ecolind.2008.07.002.
[9]  Berberich, G.; Schreiber, U. First Results of 1 Year Monitoring of Red Wood Ant Behaviour as Short-Term (>1 h) Indicators for Earthquake Prediction. In Proceedings of the EGU General Assembly, Vienna, Austria, 4–8 April 2011.
[10]  Erpenbeck, A.; Kirchner, W. Zur K?lteresistenz der Kleinen Roten Waldameise Formica polyctena Foerst. (Hymenoptera, Formicidae). Z Angew. Entomol. 1983, 96, 271–281, doi:10.1111/j.1439-0418.1983.tb03669.x.
[11]  Hetz, S.K.; Bradley, T.J. Insects breathe discontinuously to avoid oxygen toxicity. Nature 2005, 433, 516–519.
[12]  H?lldobler, B.; Wilson, E.O. Der Superorganismus—Der Erfolg von Ameisen, Bienen, Wespen und Termiten; Springer: Berlin, Germany, 2010.
[13]  Camlitepe, Y.; Stradling, D.J. Wood ants orient to magnetic fields. Proc. Roy. Soc. Lond. 1995, 261, 37–41, doi:10.1098/rspb.1995.0114.
[14]  Camlitepe, Y.; Aksoy, V.; Uren, N.; Yilmaz, A.; Becenen, I. An experimental analysis on the magnetic field sensitivity of the black-meadow ant formica pratensis retzius (Hymenoptera: Formicidae). Acta Biol. Hungarica 2005, 56, 215–224, doi:10.1556/ABiol.56.2005.3-4.5.
[15]  de Oliveira, J.F.; Wajnberg, E.; de Souza Esquivel, D.M.; Weinkauf, S.; Winklhofer, M.; Hanzlik, M. Ant antennae: Are they sites for magnetoreception? J. Roy. Soc. Interface 2010, 7, 143–152, doi:10.1098/rsif.2009.0102.
[16]  Berberich, G. Identifikation junger gasführender St?rungszonen in der West- und Hocheifel mit Hilfe von Bioindikatoren. Ph.D. Thesis, 2010.
[17]  Berberich, G.; Klimetzek, D.; W?hler, C.; Grumpe, A. Statistical Correlation between Red Wood Ant Sites and Neotectonic Strike-Slip Faults. In Proceedings of the EGU General Assembly, Vienna, Austria, 22–27 April 2012.
[18]  J?hne, B. Digitale Bildverarbeitung, 6th ed.; Springer: Berlin, Germany, 2005.
[19]  Geologische übersichtskarte von Deutschland 1:200 000; Digitale Ausgabe, Blatt Trier CC 6302; Bundesanstalt für Geowissenschaften und Rohstoffe (BGR): Hanover, Germany, 2010.
[20]  Erl?uterungen zu Blatt C 5502 Aachen; Geologisches Landesamt Nordrhein-Westfalen (GLA-NRW): Krefeld, Germany, 1992; p. 84.
[21]  Schreiber, U.; Berberich, G. Red Wood Ant Mounds as Biological Indicators for Earthquake-bearing Fault Systems. In Proceedings of the EGU General Assembly, Vienna, Austria, 4–8 April 2011.
[22]  Grant, R.A.; Halliday, T.; Bladerer, W.P.; Leuenberger, F.; Newcomer, M.; Cyr, G.; Freund, F.T. Ground water chemistry changes before major earthquakes and possible effects on animals. Int. J. Environ. Res. Public Health 2011, 8, 1936–1956.
[23]  Dologlou, E. Recent aspects on possible interrelation between precursory electric signals and anomalous bioeffects. Nat. Hazards Earth Syst. Sci. 2010, 10, 1951–1955, doi:10.5194/nhess-10-1951-2010.
[24]  Weaver, J.C.; Vaughan, T.E.; Astumian, R.D. Biological sensing of small field differences by magnetically sensitive chemical reactions. Nature 2000, 405, 707–709.
[25]  Weaver, J.C. Understanding conditions for which biological effects of nonionizing electromagnetic fields can be expected. Bioelectrochemistry 2002, 56, 207–209, doi:10.1016/S1567-5394(02)00038-5.
[26]  Ouzounov, D.; Freund, F.T. Mid-infrared emission prior to strong earthquakes analyzed by remote sensing data. Adv. Pace Res. 2004, 33, 268–273.
[27]  Freund, F.T. Toward a unified solid state theory for pre-earthquake signals. Acta Geophys. 2010, 58, 719–766, doi:10.2478/s11600-009-0066-x.
[28]  Carreno, E.; Capote, R.; Yague, A. Observations of Thermal Anomaly Associated to Seismic Activity from Remote Sensing. In Proceedings of General Assembly of European Seismology Commission, Lisbon, Portugal, 10–15 September 2001; pp. 265–269.
[29]  Hinzen, K.G. Stress field in the Northern Rhine area, Central Europe, from earthquake fault plane solutions. Tectonophysics 2003, 377, 325–356, doi:10.1016/j.tecto.2003.10.004.
[30]  Illies, J.; Baumann, H. Crustal dynamics and morphodynamics of the Western European Rift System. Z. f. Geomorph. 1982, 42 (Suppl.), 135–165.
[31]  Rummel, F.; Baumg?rtner, J. Hydraulic Fracturing in-situ stress and permeability measurements in the research borehole Konzen, Hohes Venn (West Germany). N. Jb. Geol. Pal?ont. Abh. 1985, 171, 183–195.
[32]  Schreiber, U.; Rotsch, S. Cenozoic block rotation according to a conjugate shear system in central Europe—Indications form paleomagnetic measurements. Tectonophysics 1998, 299, 111–142, doi:10.1016/S0040-1951(98)00201-7.
[33]  Walker, K.T.; Bokelmann, G.H.R.; Klemperer, S.L.; Bock, G. Shear-wave splitting around the Eifel hotspot: Evidence for a mantle upwelling. Geophys. J. Int. 2005, 163, 962–980, doi:10.1111/j.1365-246X.2005.02636.x.
[34]  Tesauro, M.; Hollenstein, C.; Egli, R.; Geiger, A.; Kahle, H.-G. Analysis of central western Europe deformation using GPS and seismic data. J. Geodynam. 2006, 42, 194–209, doi:10.1016/j.jog.2006.08.001.
[35]  Weisser, D. Tektonik und Barytg?nge in der SE-Eifel. Zeitschrift der deutschen geologischen Gesellschaft 1963, 115, 33–68.
[36]  Redecke, P. Zur Geochemie und Genese variszischer und postvariszischer Buntmetallmineralisation in der Nordeifel und der Niederrheinischen Bucht. Ph.D. Thesis, RWTH Aachen, Aachen, Germany, 1992.
[37]  Campbell, J.; Kümpel, H.‐J.; Fabian, M.; Fischer, D.; G?rres, B.; Keysers, C.J.; Lehmann, K. Recent movement pattern of the Lower Rhine Embayement from tilt, gravity and GPS data. Netherlands J. Geosci. 2002, 81, 223–230.
[38]  Ahorner, L. Present-day stress field and seismotectonic block movements along major faults in Western Europe. Tectonophysics 1975, 29, 233–249, doi:10.1016/0040-1951(75)90148-1.
[39]  Earthquake Data Catalogue. Department of Earthquake Geology of Cologne University. Available online: http://www.seismo.uni-koeln.de/catalog/index.htm (accessed on 9 November 2012).
[40]  Earthquake Catalogue. Landesamt für Geologie und Bergbau Rheinland-Pfalz. Available online: http://www.lgb-rlp.de/erdbeben.htm (accessed on 10 September 2009).
[41]  Schreiber, U.; Berberich, G. Why does the Size of the Laacher See Magma Chamber and its Caldera Size not go together?—New Findings with regard to Active Tectonics in the East Eifel Volcanic Field. In Proceedings of the EGU General Assembly, Vienna, Austria, 7–12 April 2013.
[42]  Earth Tides Vertical Displacements. Astronomisches Institut, University of Bern. Available online: http://www.aiub.unibe.ch/content/services/earth_tides/index_eng.html (accessed on 1 September 2009).
[43]  Earth Tides and Volcano Monitoring. Hawaian Volcano Observatory. USGS. Available online: http://hvo.wr.usgs.gov/volcanowatch/98_05_28.html (accessed on 28 November 2012).
[44]  Agnew, D.C. Earth Tides. In Treatise on Geophysics; Schubert, G., Herring, T., Eds.; Elsevier: Oxford, UK, 2007; Volume 3, pp. 163–195.
[45]  Wetter und Klima. Deutscher Wetterdienst. Freie Met. Infos. Available online: http://www.dwd.de/...202758871200642573928&_urlType=action&_pageLabel=_dwdwww_menu2_leistungen_a-z_freiemetinfos (accessed on 1 September 2009).
[46]  Hsu, Y.Z.; Nagel, H.H.; Rekers, G. New likelihood test methods for change detection in image sequences. Comput. Vision Graph. Image Process. 1984, 26, 73–106, doi:10.1016/0734-189X(84)90131-2.
[47]  Rosin, P.; Ellis, T. Image Difference Threshold Strategies and Shadow Detection. In Proceedings of the Sixth British Machine Vision Conference, Birmingham, UK, 11–14 September 1995; pp. 347–356.
[48]  Brown, L.G. A Survey of image registration techniques. ACM Comput. Surv. 1992, 24, 325–376, doi:10.1145/146370.146374.
[49]  Lighton, J.R.B.; Duncan, F.D. Shaken, not stirred: A serendipitous study of ants and earthquakes. J. Exp. Biol. 2005, 208, 3103–3107, doi:10.1242/jeb.01735.
[50]  G??wald, K. Artunterschiede der Waldameisen in Aussehen, Lebensweise, Organisation, Verhalten, Nest- und Stra?enbau, ?kologie und Verbreitung. Waldhygiene 1982, 14, 161–192.
[51]  Goropashnaya, A. Phylogeographic Structure and Genetic Variation in Formica Ants. Ph.D. Thesis, Uppsala University, Uppsala, Sweden, 2003.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133