全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Animals  2013 

Possible Electromagnetic Effects on Abnormal Animal Behavior Before an Earthquake

DOI: 10.3390/ani3010019

Keywords: abnormal animal behavior, earthquakes, seismogenic electromagnetic emissions

Full-Text   Cite this paper   Add to My Lib

Abstract:

The former statistical properties summarized by Rikitake (1998) on unusual animal behavior before an earthquake (EQ) have first been presented by using two parameters (epicentral distance (D) of an anomaly and its precursor (or lead) time (T)). Three plots are utilized to characterize the unusual animal behavior; (i) EQ magnitude (M) versus D, (ii) log T versus M, and (iii) occurrence histogram of log T. These plots are compared with the corresponding plots for different seismo-electromagnetic effects (radio emissions in different frequency ranges, seismo-atmospheric and -ionospheric perturbations) extensively obtained during the last 15–20 years. From the results of comparisons in terms of three plots, it is likely that lower frequency (ULF (ultra-low-frequency, f ≤ 1 Hz) and ELF (extremely-low-frequency, f ≤ a few hundreds Hz)) electromagnetic emissions exhibit a very similar temporal evolution with that of abnormal animal behavior. It is also suggested that a quantity of field intensity multiplied by the persistent time (or duration) of noise would play the primary role in abnormal animal behavior before an EQ.

References

[1]  Evernden, J. U.S. Geological Survey Office of Earthquake Studies. In Abnormal Animal Behavior Prior to Earthquakes; U.S. Department of Commerce, National Technical Information Service: Alexandria, VA, USA, 1976.
[2]  Buskirk, R.E.; Frohlich, C.; Lantham, G.V. Unusual animal behavior before earthquakes: A review of possible sensory mechanisms. Rev. Geophys. Space Phys. 1981, 19, 247–270, doi:10.1029/RG019i002p00247.
[3]  Tributsch, H. When the Snakes Awake—Animals and Earthquake Prediction; MIT Press: Cambridge, MA, USA, 1982.
[4]  Rikitake, T. The Science of Macro-Anomaly Precursory to an Earthquake; Kinmiraisha: Nagoya, Japan, 1998.
[5]  Kirschvink, J.L. Earthquake prediction by animals: Evolution and sensory perception. Bull. Seismol. Soc. Am. 2000, 90, 312–323, doi:10.1785/0119980114.
[6]  Ikeya, M. Earthquakes and Animals: From Folk Legends to Science; World Scientific: Singapore, 2004.
[7]  Yokoi, S.; Ikeya, M.; Yagi, T.; Nagai, K. Mouse circadian rhythm before the Kobe earthquake in 1995. Bioelectromagnetics 2003, 24, 289–291, doi:10.1002/bem.10108.
[8]  Li, Y.; Liu, Y.; Jiang, Z.; Guan, J.; Yi, G.; Cheng, S.; Yang, B.; Fu, T.; Wang, Z. Behavioral change related to Wenchuan devastating earthquake in mice. Bioelectromagnetics 2009, 30, 613–620, doi:10.1002/bem.20520.
[9]  Bhargava, N.; Katiyar, V.K.; Sharma, M.L.; Pradhan, P. Earthquake prediction through animal behavior: A review. Indian J. Biomech. 2009, 7–8, 159–165.
[10]  Grant, R.A.; Halliday, T. Predicting the unpredictable; evidence of pre-seismic anticipatory behavior in the common toad. J. Zool. 2010, 281, 1–9, doi:10.1111/j.1469-7998.2009.00668.x.
[11]  Nishimura, T.; Okano, H.; Tada, H.; Nishimura, E.; Sugimoto, K.; Mohri, K.; Fukushima, M. Lizards respond to an extremely low-frequency electromagnetic field. J. Exp. Biol. 2010, 213, 1985–1990, doi:10.1242/jeb.031609.
[12]  Grant, R.A.; Halliday, T.; Balderer, W.P.; Leuenberger, F.; Newcomer, M.; CYR, G.; Freund, F.T. Ground water chemistry changes before major earthquakes and possible effects on animals. Int. J. Environ. Res. Public Health 2011, 8, 1936–1959.
[13]  Seismo Electromagnetics: Lithosphere-Atmosphere-Ionosphere Coupling; Hayakawa, M., Molchanov, O.A., Eds.; TERRAPUB: Tokyo, Japan, 2002.
[14]  Molchanov, O.A.; Hayakawa, M. Seismo Electromagnetics and Related Phenomena: History and Latest Results; TERRAPUB: Tokyo, Japan, 2008.
[15]  Kayano, I. Damages and seismicity distribution of an earthquake (M6.0) occurred in the Ibaraki-ken Nambu region on February 27, 1983 (in Japanese). Mem. Earthquake Res. Inst. 1983, 58, 831–878.
[16]  Kayano, I. Study of Nagano-ken Seibu Earthquake (in Japanese); Technical Report; Natural Disaster Science Study Group: Tokyo Japan, 1984; pp. 135–143.
[17]  Atmospheric and Ionospheric Electromagnetic Phenomena Associated with Earthquakes; Hayakawa, M., Ed.; TERRAPUB: Tokyo, Japan, 1999.
[18]  Pulinets, S.A.; Boyarchuk, K. Ionospheric Precursors of Earthquakes; Springer: Berlin, Germany, 2004.
[19]  Electromagnetic Phenomena Associated with Earthquakes; Hayakawa, M., Ed.; Transworld Research Network: Trivandrum, India, 2009.
[20]  The Frontier of Earthquake Prediction Studies; Hayakawa, M., Ed.; Nihon-senmontosho-Shuppan: Tokyo, Japan, 2012.
[21]  Uyeda, S.; Nagao, T.; Kamogawa, M. Short-term earthquake prediction: Current state of seismo-electromagnetics. Tectonophysics 2009, 470, 205–213, doi:10.1016/j.tecto.2008.07.019.
[22]  Hayakawa, M.; Hobara, Y. Current status of seismo-electromagnetics for short-term earthquake prediction. Geomat. Nat. Hazardz Risk 2010, 1, 115–155, doi:10.1080/19475705.2010.486933.
[23]  Varotsos, P. The Physics of Seismic Electric Signals; TERRAPUB: Tokyo, Japan, 2005.
[24]  Kopytenko, Y.A.; Matiashvili, T.G.; Voronov, P.M.; Kopytenko, E.A.; Molchanov, O.A. Detection of ultra-low frequency emissions connected with the Spitak earthquake and its aftershock activity based on geomagnetic pulsations data at Dusheti and Vardzia observations. Phys. Earth Planet. Inter. 1993, 77, 85–95, doi:10.1016/0031-9201(93)90035-8.
[25]  Fraser-Smith, A.C.; Bernardi, A.; McGill, P.R.; Ladd, M.E.; Helliwell, R.A.; Villard, O.G., Jr. Low-frequency magnetic field measurements near the epicenter of the Ms7.1 Loma Prieta earthquake. Geophys. Res. Lett. 1990, 17, 1465–1468, doi:10.1029/GL017i009p01465.
[26]  Hayakawa, M.; Kawate, R.; Molchanov, O.A.; Yumoto, K. Results of ultra-low-frequency magnetic field measurements during the Guam earthquake of 8 August 1993. Geophys. Res. Lett. 1996, 23, 241–244, doi:10.1029/95GL02863.
[27]  Hattori, K. ULF geomagnetic changes associated with large earthquakes. Terr. Atmos. Ocean. Sci. 2004, 15, 329–360.
[28]  Hayakawa, M.; Hattori, K. Ultra-low-frequency electromagnetic emissions associated with earthquakes. IEEJ Trans. Fundament. Mater. 2004, 124, 1101–1108, doi:10.1541/ieejfms.124.1101.
[29]  Schekotov, A.Y.; Molchanov, O.A.; Hayakawa, M.; Fedorov, E.N.; Chebrov, V.N.; Sinitsin, V.I.; Gordeev, E.E.; Belyaev, G.G.; Yagova, N.V. ULF/ELF magnetic field variations from atmosphere induced by seismicity. Radio Sci. 2007, 42, doi:10.1029/2005RS003441.
[30]  Hayakawa, M. Seismogenic perturbation in the atmosphere. In Electromagnetic Phenomena Associated with Earthquakes; Hayakawa, M., Ed.; Transworld Research Network: Trivandrum, India, 2009; pp. 119–136.
[31]  Nickolaenko, A.P.; Hayakawa, M. Resonances in the Earth-Ionosphere Cavity; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2002.
[32]  Hata, M.; Takumi, I.; Yasukawa, H.; Fujii, T. ELF band EM precursor and signal processing to predict earthquakes. In Natural Electromagnetic Phenomena and Electromagnetic Theory; The Institute of Electrical Engineers of Japan: Tokyo, Japan, 2006; pp. 46–52.
[33]  Fujinawa, Y.; Takahashi, K.; Matsumoto, T.; Kawakami, N. Sources of earthquake-related VLF electromagnetic signals. In Atmospheric and Ionospheric Electromagnetic Phenomena Associated with Earthquakes; Hayakawa, M., Ed.; TERRAPUB: Tokyo, Japan, 1999; pp. 405–415.
[34]  Oike, K.; Yamada, T. Relationship between shallow earthquakes and electromagnetic noises in the LF and VLF range. In Electromagnetic Phenomena Related to Earthquake Prediction; Hayakawa, M., Fujinawa, Y., Eds.; TERRAPUB: Tokyo, Japan, 1994; pp. 115–130.
[35]  Enomoto, Y.; Hashimoto, H. Anomalous electric signals detected before recent earthquakes in Japan near Tsukuba. In Electromagnetic Phenomena Related to Earthquake Prediction; Hayakawa, M., Fujinawa, Y., Eds.; TERRAPUB: Tokyo, Japan, 1994; pp. 261–269.
[36]  Hayakawa, M. Lower ionospheric perturbation associated with earthquakes, as detected by subionospheric VLF/LF radio waves. In Electromagnetic Phenomena Associated with Earthquakes; Hayakawa, M., Ed.; Transworld Research Network: Trivandrum, India, 2009; pp. 137–185.
[37]  Freund, F. Stress-activated positive hole change carriers in rocks and the generator of pre-earthquake signals. In Electromagnetic Phenomena Associated with Earthquakes; Hayakawa, M., Ed.; Transworld Research Network: Trivandrum, India, 2009; pp. 41–96.
[38]  Liu, J.Y. Earthquake precursors observed in the ionospheric F-region. In Electromagnetic Phenomena Associated with Earthquakes; Hayakawa, M., Ed.; Transworld Research Network: Trivandrum, India, 2009; pp. 187–204.
[39]  Pulinets, S.A. Lithosphere-atmosphere-ionosphere coupling (LAIC) model. In Electromagnetic Phenomena Associated with Earthquakes; Hayakawa, M., Ed.; Transworld Research Network: Trivandrum, India, 2009; pp. 235–253.
[40]  Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz; IEEE Std C95.1, 1999; IEEE: New York, NY, USA, 1999.
[41]  Werthemier, N.; Leeper, E. Electrical wiring configuration and childhood cancer. Am. J. Epidemiol. 1979, 109, 273–248.
[42]  Reiter, R.J. An assessment of the bioeffects induced by power-line frequency electromagnetic fields. In Modern Radio Science 1999; Stuchly, M., Ed.; Oxford University Press: Oxford, UK, 1999; pp. 287–307.
[43]  Cherry, N.J. Human intelligence: The brain, an electromagnetic system synchronized by the Schumann resonance signal. Med. Hypoth. 2003, 60, 843–844, doi:10.1016/S0306-9877(03)00027-6.
[44]  Mitsutake, G.; Otsuka, K.; Hayakawa, M.; Sekiguchi, M.; Cornélissen, G.; Halberg, F. Does Schumann resonance affect our blood pressure? Biomed. Pharmacother. 2005, 59, S10–S14, doi:10.1016/S0753-3322(05)80003-4.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133