|
Multiplex genotyping system for efficient inference of matrilineal genetic ancestry with continental resolutionAbstract: Three multiplex genotyping assays, based on single-base primer extension technology, were developed targeting a total of 36 coding-region mtDNA variants that together differentiate 43 matrilineal haplo-/paragroups. These include the major diagnostic haplogroups for Africa, Western Eurasia, Eastern Eurasia and Native America. The assays show high sensitivity with respect to the amount of template DNA: successful amplification could still be obtained when using as little as 4 pg of genomic DNA and the technology is suitable for medium-throughput analyses.We introduce an efficient and sensitive multiplex genotyping system for bio-geographic ancestry inference from mtDNA that provides resolution on the continental level. The method can be applied in forensics, to aid tracing unknown suspects, as well as in population studies, genealogy and personal ancestry testing. For more complete inferences of overall bio-geographic ancestry from DNA, the mtDNA system provided here can be combined with multiplex systems for suitable autosomal and, in the case of males, Y-chromosomal ancestry-sensitive DNA markers.Establishing the geographic region of a person's genetic origin - also called bio-geographic ancestry - is of forensic relevance when the short tandem repeat (STR) profile of trace DNA found at a crime scene does not match that of a suspect or does not yield any matches in a criminal DNA database because it may provide investigative leads to finding unknown persons [1]. Similarly, such information can be useful for locating antemortem samples or putative relatives of unidentified body remains, including disaster victim identification [2]. Furthermore, inferring geographic information from DNA data is important in population history studies [3,4] and has gained attention in the growing field of personal ancestry testing [5,6].Several years of intensive research into the understanding of the geographic distribution of human genetic diversity present in the non-recombining mit
|