|
Feather barbs as a good source of mtDNA for bird species identification in forensic wildlife investigationsAbstract: By applying vigorous contamination controls and sensitive PCR amplification protocols, we found that it was feasible to obtain accurate mitochondrial (mt)DNA-based species identification with as few as two feather barbs. This minimally destructive DNA approach was successfully used and tested on a variety of bird species, including North American wild turkey (Meleagris gallopavo), Canada goose (Branta canadensis), blue heron (Ardea herodias) and pygmy owl (Glaucidium californicum). The mtDNA was successfully obtained from 'fresh' feathers, historic museum specimens and archaeological samples, demonstrating the sensitivity and versatility of this technique.By applying appropriate contamination controls, sufficient quantities of mtDNA can be reliably recovered and analyzed from feather barbs. This previously overlooked substrate provides new opportunities for accurate DNA species identification when minimal feather samples are available for forensic analysis.Accurate identification of bird species is crucial for wildlife law enforcement and other aspects of wildlife forensics. Currently, many birds and bird products (such as feathers) are protected under the US Migratory Bird Treaty (MBTA), the US Endangered Species Act (ESA) and the Convention on International Trade in Endangered Species (CITES). Identification of these protected species by law enforcement personnel may be challenging when only partial or damaged feathers are available for examination. Additionally, other criminal investigations, such as bird larceny, may also be contingent upon accurate species identification of bird feathers [1]. Although morphologically-based identifications are possible when feathers are complete and intact, they may be unfeasible when feathers have been modified, dyed or damaged. In such cases, DNA-based species identification techniques can be far more accurate.Feathers are made up of a calamus (or basal quill), which extends into the rachis (or main shaft), which then supports
|