全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Research on Heuristic Feature Extraction and Classification of EEG Signal Based on BCI Data Set

Keywords: Brain Computer Interface (BCI) , Electroencephalogram (EEG) , feature extraction , genetic algorithm

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this study, an EEG signal classification framework was proposed. The framework contained three feature extraction methods refer to optimization strategy. Firstly, we selected optimal electrodes based on the single electrode classification performance and combined all the optimal electrodes’ data as the feature. Then, we discussed the contribution of each time span of EEG signals for each electrode and joined all the optimal time spans’ data together to be used for classifying. In addition, we further selected useful information from original data based on genetic algorithm. Finally, the performances were evaluated by Bayes and SVM classifiers on BCI 2003 Competition data set Ia. And the accuracy of genetic algorithm has reached 91.81%. The experimental results show that our methods offer the better performance for reliable classification of the EEG signal.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133