|
Functional repertoire, molecular pathways and diseases associated with 3D domain swapping in the human proteomeKeywords: Protein aggregation, Human disease, Deposition disease, Human proteome, Data integration, Biological data mining Abstract: We used a panel of four enrichment tools with two different ontologies and two annotations database to derive biological and clinical relevant information associated with 3D domain swapping. Protein domain enrichment analysis followed by Gene Ontology (GO) term enrichment analysis revealed the functional repertoire of proteins involved in swapping. Pathway analysis using KEGG annotations revealed diverse pathway associations of human proteins involved in 3D domain swapping. Disease Ontology was used to find statistically significant associations with proteins in swapped conformation and various disease categories (P-value < 0.05).We report meta-analysis results of a literature-curated dataset of human gene products involved in 3D domain swapping and discuss new insights about the functional repertoire, pathway associations and disease implications of proteins involved in 3D domain swapping.Our integrated bioinformatics pipeline comprising of four different enrichment tools, two ontologies and two annotations revealed new insights into the functional and disease correlations with 3D domain swapping. GO term enrichment were used to infer terms associated with three different GO categories. Protein domain enrichment was used to identify conserved domains enriched in swapped proteins. Pathway enrichment analysis using KEGG annotations revealed that proteins with swapped conformations are present in all six classes of KEGG BRITE hierarchy and significantly enriched KEGG pathways were observed in five classes. Five major classes of disease were found to be associated with 3D domain swapping using functional disease ontology based enrichment analysis. Five classes of human diseases: cancer, diseases of the respiratory or pulmonary system, degenerative diseases of the central nervous system, vascular disease and encephalitis were found to be significant. In conclusion, our study shows that bioinformatics based analytical approaches using curated data can enhance the underst
|