全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Over-expression of BMPR-IB reduces the malignancy of glioblastoma cells by upregulation of p21 and p27Kip1

DOI: 10.1186/1756-9966-31-52

Keywords: 1. BMPR-IB, 2. Glioblastoma, 3. Growth inhibition, 4. Differentiation

Full-Text   Cite this paper   Add to My Lib

Abstract:

We selected glioblastoma cell lines U251, U87, SF763, which have different expression of BMPR-IB to be the research subjects. Colony formation analysis and FACS were used to detect the effects of BMPR-IB on the growth and proliferation of glioblastoma cells in vivo. Immunofluresence was used to detect the differentiation changes after BMPR-IB overexpression or knocking-down. Then we used subcutaneous and intracranial tumor models to study the effect of BMPR-IB on the growth and differentiation of glioblastoma cells in vivo. The genetic alterations involved in this process were examined by real-time PCR and western blot analysis.ed.Forced BMPR-IB expression in malignant human glioma cells, which exhibit lower expression of BMPR-IB, induced the phosphorylation and nuclear localization of smad1/5/8 and arrested the cell cycle in G1. Additionally, BMPR-IB overexpression could suppress anchorage-independent growth and promote differentiation of theses glioblastoma cells. Furthermore, overexpression of BMPR-IB inhibited the growth of subcutaneous and intracranial tumor xenografts and prolonged the survival of mice injected intracranially with BMPR-IB-overexpressing glioblastoma cells. Conversely, inhibition of BMPR-IB caused SF763 malignant glioma cells, a line known to exhibit high BMPR-IB expression that does not form tumors when used for xenografts, to show increased growth and regain tumorigenicity in a nude mouse model system, ultimately shortening the survival of these mice. We also observed significant accumulation of p21 and p27kip1 proteins in response to BMPR-IB overexpression. Our study suggests that overexpression of BMPR-IB may arrest and induce the differentiation of glioblastoma cells due to upregulation of p21 and p27kip1 in vitro and that in vivo and decreased expression of BMPR-IB in human glioblastoma cells contributes to glioma tumorigenicity. BMPR-IB could represent a new potential therapeutic target for malignant human gliomas.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133