全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Activation Detection on fMRI Time Series Using Hidden Markov Model

DOI: 10.1155/2012/190359

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper introduces two unsupervised learning methods for analyzing functional magnetic resonance imaging (fMRI) data based on hidden Markov model (HMM). HMM approach is focused on capturing the first-order statistical evolution among the samples of a voxel time series, and it can provide a complimentary perspective of the BOLD signals. Two-state HMM is created for each voxel, and the model parameters are estimated from the voxel time series and the stimulus paradigm. Two different activation detection methods are presented in this paper. The first method is based on the likelihood and likelihood-ratio test, in which an additional Gaussian model is used to enhance the contrast of the HMM likelihood map. The second method is based on certain distance measures between the two state distributions, in which the most likely HMM state sequence is estimated through the Viterbi algorithm. The distance between the on-state and off-state distributions is measured either through a t-test, or using the Kullback-Leibler distance (KLD). Experimental results on both normal subject and brain tumor subject are presented. HMM approach appears to be more robust in detecting the supplemental active voxels comparing with SPM, especially for brain tumor subject. 1. Introduction Functional magnetic resonance imaging (fMRI) is a well-established technique to monitor brain activities in the field of cognitive neuroscience. The temporal behavior of each fMRI voxel reflects the variations in the concentration of oxyhemoglobin and deoxyhemoglobin, measured through blood oxygen level-dependent (BOLD) contrast. BOLD signal is generally considered as an indirect indicator for brain activities, because neural activations may increase blood flow in certain regions of the brain. 1.1. Characteristics of fMRI Data fMRI data are collected as a time series of 3 D images. Each point in the 3 D image volume is called a voxel. fMRI data have four important characteristics: (1) large data volume; (2) relatively low SNR; (3) hemodynamic delay and dispersion; (4) fractal properties. Typically, one fMRI data set includes over 1 0 0 -K voxels from a whole brain scan and therefore has 1 0 0 -K time series. The observed time sequences are combinations of different types of signals, such as task-related, function-related, and transiently task-related (different kinds of transiently task-related signals coming from different regions of brain). These are the signals that convey brain activation information. There are also many types of noises, which can be physiology-related, motion-related, and

References

[1]  M. W. Woolrich, T. E. J. Behrens, and S. M. Smith, “Constrained linear basis sets for HRF modelling using Variational Bayes,” NeuroImage, vol. 21, no. 4, pp. 1748–1761, 2004.
[2]  P. Ciuciu, J. B. Poline, G. Marrelec, J. Idier, C. Pallier, and H. Benali, “Unsupervised robust nonparametric estimation of the hemodynamic response function for any fMRI experiment,” IEEE Transactions on Medical Imaging, vol. 22, no. 10, pp. 1235–1251, 2003.
[3]  L. Lee, L. M. Harrison, and A. Mechelli, “A report of the functional connectivity workshop, Dusseldorf 2002,” NeuroImage, vol. 19, no. 2, pp. 457–465, 2003.
[4]  K. Li, L. Guo, J. Nie, G. Li, and T. Liu, “Review of methods for functional brain connectivity detection using fMRI,” Computerized Medical Imaging and Graphics, vol. 33, no. 2, pp. 131–139, 2009.
[5]  K. J. Friston, A. P. Holmes, K. J. Worsley, J. P. Poline, C. D. Frith, and R. S. J. Frackowiak, “Statistical parametric maps in functional imaging: a general linear approach,” Human Brain Mapping, vol. 2, no. 4, pp. 189–210, 1994.
[6]  M. D. Greicius, B. Krasnow, A. L. Reiss, and V. Menon, “Functional connectivity in the resting brain: a network analysis of the default mode hypothesis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 1, pp. 253–258, 2003.
[7]  J. Ashburner, “Spm:a history,” NeuroImage, vol. 62, no. 2, pp. 791–800, 2012.
[8]  G. K. Wood, “Visualization of subtle contrast-related intensity changes using temporal correlation,” Magnetic Resonance Imaging, vol. 12, no. 7, pp. 1013–1020, 1994.
[9]  J. Cao and K. Worsley, “The geometry of correlation fields with an application to functional connectivity of the brain,” Annals of Applied Probability, vol. 9, no. 4, pp. 1021–1057, 1999.
[10]  P. Hojen-Sorensen, L. Hansen, and C. Rasmussen, “Baysian modelling of fmri time series,” in Proceedings of the 13th Annual Conference on Advances in Neural Information Processing Systems (NIPS '99), pp. 754–760, 2000.
[11]  C. Gossl, D. Auer, and L. Fahtmeir, “Dynamic models in fmri,” Magnetic Resonance in Medicine, vol. 43, no. 1, pp. 72–81, 2000.
[12]  M. Singh, W. Sungkarat, J. W. Jeong, and Y. Zhou, “Extraction of temporal information in functional MRI,” IEEE Transactions on Nuclear Science, vol. 49, no. 5, pp. 2284–2290, 2002.
[13]  V. Sanguineti, C. Parodi, S. Perissinotto et al., “Analysis of fMRI time series with mixtures of Gaussians,” in Proceedings of the International Joint Conference on Neural Networks (IJCNN '2000), vol. 1, pp. 331–335, July 2000.
[14]  S. Faisan, L. Thoraval, J. P. Armspach, and F. Heitz, “Unsupervised learning and mapping of brain fMRI signals based on hidden semi-Markov event sequence models,” in Proceedings of the 6th International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI '03), pp. 75–82, November 2003.
[15]  B. Thirion and O. Faugeras, “Revisiting non-parametric activation detection on fMRI time series,” in Proceedings of the IEEE Workshop on Mathematical Methods in Biomedical Image Analysis, vol. 1, pp. 121–128, December 2001.
[16]  M. W. Woolrich, M. Jenkinson, J. M. Brady, and S. M. Smith, “Fully bayesian spatio-temporal modeling of FMRI data,” IEEE Transactions on Medical Imaging, vol. 23, no. 2, pp. 213–231, 2004.
[17]  A. Roebroeck, E. Formisano, and R. Goebel, “Mapping directed influence over the brain using Granger causality and fMRI,” NeuroImage, vol. 25, no. 1, pp. 230–242, 2005.
[18]  K. J. Friston, L. Harrison, and W. Penny, “Dynamic causal modelling,” NeuroImage, vol. 19, no. 4, pp. 1273–1302, 2003.
[19]  K. Friston, “Dynamic causal modeling and Granger causality comments on: the identification of interacting networks in the brain using fMRI: model selection, causality and deconvolution,” NeuroImage, vol. 58, pp. 303–305, 2011.
[20]  O. David, “fMRI connectivity, meaning and empiricism. Comments on: Roebroeck et al. The identification of interacting networks in the brain using fMRI: model selection, causality and deconvolution,” NeuroImage, vol. 58, pp. 306–309, 2011.
[21]  A. Roebroeck, E. Formisano, and R. Goebel, “Reply to Friston and David. After comments on: the identification of interacting networks in the brain using fMRI: model selection, causality and deconvolution,” NeuroImage, vol. 58, pp. 296–302, 2011.
[22]  A. Roebroeck, E. Formisano, and R. Goebel, “Reply to Friston and David. After comments on: the identification of interacting networks in the brain using fMRI: model selection, causality and deconvolution,” NeuroImage, vol. 58, pp. 310–311, 2011.
[23]  G. Lohmann, K. Erfurth, K. Mller, and R. Turner, “Critical comments on dynamic causal modelling,” NeuroImage, vol. 59, pp. 2322–2329, 2012.
[24]  M. Mckeown, S. Makeig, G. Brown et al., “Analysis of fmri data by blind seperation into independent spatial components,” Human Brain Mapping, vol. 6, pp. 160–188, 1998.
[25]  B. B. Biswal and J. L. Ulmer, “Blind source separation of multiple signal sources of fMRI data sets using independent component analysis,” Journal of Computer Assisted Tomography, vol. 23, no. 2, pp. 265–271, 1999.
[26]  V. D. Calhoun, T. Adali, G. D. Pearlson, and J. J. Pekar, “Spatial and temporal independent component analysis of functional MRI data containing a pair of task-related waveforms,” Human Brain Mapping, vol. 13, no. 1, pp. 43–53, 2001.
[27]  J. V. Stone, J. Porrill, N. R. Porter, and I. D. Wilkinson, “Spatiotemporal independent component analysis of event-related fMRI data using skewed probability density functions,” NeuroImage, vol. 15, no. 2, pp. 407–421, 2002.
[28]  A. J. Bell and T. J. Sejnowski, “An information-maximization approach to blind separation and blind deconvolution,” Neural Computation, vol. 7, no. 6, pp. 1129–1159, 1995.
[29]  F. J. Theis, P. Gruber, I. R. Keck, and E. W. Lang, “A robust model for spatiotemporal dependencies,” Neurocomputing, vol. 71, no. 10–12, pp. 2209–2216, 2008.
[30]  G. McLachlan and D. Peel, Finite Mixture Models, John Wiley & Sons, New York, NY, USA, 2000.
[31]  L. R. Rabiner, “Tutorial on hidden Markov models and selected applications in speech recognition,” Proceedings of the IEEE, vol. 77, no. 2, pp. 257–286, 1989.
[32]  G. Xu, Y. F. Ma, H. J. Zhang, and S. Q. Yang, “An HMM-based framework for video semantic analysis,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 15, no. 11, pp. 1422–1433, 2005.
[33]  A. Krogh, M. Brown, I. S. Mian, K. Sjolander, and D. Haussler, “Hidden Markov Models in computational biology applications to protein modeling,” Journal of Molecular Biology, vol. 235, no. 5, pp. 1501–1531, 1994.
[34]  R. Durbin, S. Eddy, A. Krogh, and G. Mitchison, Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids, Cambridge University Press, 1999.
[35]  D. Miller, T. Leek, and R. Schwartz, “A hidden markov model information retrieval system,” in Proceedings of the 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 214–221, ACM, 1999.
[36]  G. D. Forney, “The viterbi algorithm,” Proceedings of the IEEE, vol. 61, no. 3, pp. 268–278, 1973.
[37]  S. Kullback and R. Leibler, “On information and sufficiency,” Annals of Mathematical Statistics, vol. 22, no. 1, pp. 79–86, 1951.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413