全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Antibodies  2013 

Ricin and Ricin-Containing Immunotoxins: Insights into Intracellular Transport and Mechanism of action in Vitro

DOI: 10.3390/antib2020236

Keywords: ricin, ricin-based immunotoxins, intracellular transport, apoptosis, vascular leak syndrome

Full-Text   Cite this paper   Add to My Lib

Abstract:

Ricin is a type II ribosome inactivating protein (RIP) isolated from castor beans. Its high toxicity classifies it as a possible biological weapon. On the other hand, ricin linked to specific monoclonal antibodies or used in other conjugates has powerful medical applications. Ricin consists of an A-chain (RTA) that damages ribosomes and inhibits protein synthesis, and a B-chain that plays a role in binding and cellular uptake. A number of recent studies have demonstrated that ricin-induced inhibition of protein synthesis is not the only mechanism responsible for cell death. It turns out that ricin is able to induce apoptosis in different cell lines and multiple organs in animals. However, the molecular link between protein synthesis inhibition and ricin-dependent triggering of apoptotic cell death is unclear. This review describes the intracellular transport of ricin and ricin-based immunotoxins and their mechanism of action in different non-malignant and cancer cell lines. Moreover, various ricin-containing immunotoxins, their composition, medical applications and side-effects will be described and discussed. Understanding the mechanism of action of ricin-based immunotoxins will facilitate construction of effectively acting immunotoxins that can be used in the clinic for cancer treatment.

References

[1]  Stillmark, H. Uber ricin, eines gifiges ferment aus den samen von Ricinnus communis L. Und einigen anderen Euphorbiaceen. PhD Thesis, University of Dorpat, Estonia, 1888.
[2]  Ehrlich, P. Experimentalle untersuchungen uber immunitat I. Ueber ricin. Dtsch. Med. Wochenschr. 1891, 17, 976–979, doi:10.1055/s-0029-1206682.
[3]  Ehrlich, P. Experimentalle untersuchungen uber immunitat I. Ueber ricin. Dtsch. Med. Wochenschr. 1891, 17, 1218–1219, doi:10.1055/s-0029-1206825.
[4]  Olsnes, S.; Pihl, A. Different biological properties of the two constituent chains of ricin, a toxic protein inhibiting protein. Biochemistry 1973, 12, 3121–3126, doi:10.1021/bi00740a028.
[5]  Endo, Y.; Tsurugi, K. RNA N-glycosidase activity of ricin A-chain. Mechanism of action of the toxic lectin ricin on eukaryotic ribosomes. J. Biol. Chem. 1987, 262, 8128–8130.
[6]  Endo, Y.; Mitsui, K.; Motizuki, M.; Tsurugi, K. The mechanism of action of ricin and related toxic lectins on eukaryotic ribosomes. The site and the characteristics of the modification in 28S ribosomal RNA caused by the toxins. J. Biol. Chem. 1987, 262, 5908–5912.
[7]  Olsnes, S.; Refsnes, K.; Pihl, A. Mechanism of action of the toxic lectins abrin and ricin. Nature 1974, 249, 627–631, doi:10.1038/249627a0.
[8]  Audi, J.; Belson, M.; Patel, M.; Schier, J.; Osterloh, J. Ricin poisoning: A comprehensive review. JAMA 2005, 294, 2342–2351, doi:10.1001/jama.294.18.2342.
[9]  Smallshaw, J.E.; Richardson, J.A.; Pincus, S.; Schindler, J.; Vitetta, E.S. Preclinical toxicity and efficacy testing of RiVax, a recombinant protein vaccine against ricin. Vaccine 2005, 23, 4775–4784, doi:10.1016/j.vaccine.2005.04.037.
[10]  Vitetta, E.S.; Smallshaw, J.E.; Coleman, E.; Jafri, H.; Foster, C.; Munford, R.; Schindler, J. A pilot clinical trial of a recombinant ricin vaccine in normal humans. Proc. Natl. Acad. Sci. USA 2006, 103, 2268–2273.
[11]  Vitetta, E.S.; Smallshaw, J.E.; Schindler, J. Pilot Phase IB Clinical Trial of an Alhydrogel-Adsorbed Recombinant Ricin Vaccine. Clin. Vaccine Immunol. 2012, 19, 1697–1699, doi:10.1128/CVI.00381-12.
[12]  Sandvig, K.; van Deurs, B. Entry of ricin and shiga toxin into cells: Molecular mechanisms and medical perspectives. EMBO J. 2000, 19, 5943–5950, doi:10.1093/emboj/19.22.5943.
[13]  Sandvig, K.; Torgersen, M.L.; Engedal, N.; Skotland, T.; Iversen, T.G. Protein toxins from plants and bacteria: Probes for intracellular transport and tools in medicine. FEBS Lett. 2010, 84, 2626–2634.
[14]  Wesche, J.; Rapak, A.; Olsnes, S. Dependence of ricin toxicity on translocation of the toxin A chain from the endoplasmic reticulum to the cytosol. J. Biol. Chem. 1999, 274, 34443–34449, doi:10.1074/jbc.274.48.34443.
[15]  Slominska-Wojewodzka, M.; Gregers, T.F.; W?lchli, S.; Sandvig, K. EDEM is involved in retrotranslocation of ricin from the endoplasmic reticulum to the cytosol. Mol. Biol. Cell 2006, 17, 1664–1975, doi:10.1091/mbc.E05-10-0961.
[16]  Sokolowska, I.; W?lchli, S.; Wegrzyn, G.; Sandvig, K.; Slominska-Wojewodzka, M. A single point mutation in ricin A-chain increases toxin degradation and inhibits EDEM1-dependent ER retrotranslocation. Biochem. J. 2011, 436, 371–385, doi:10.1042/BJ20101493.
[17]  Hebert, D.N.; Molinari, M. In and out of the ER: Protein folding, quality control, degradation, and related human diseases. Physiol. Rev. 2007, 87, 1377–1408, doi:10.1152/physrev.00050.2006.
[18]  Donayre-Torres, A.J.; Esquivel-Soto, E.; Gutiérrez-Xicoténcatl Mde, L.; Esquivel-Guadarrama, F.R.; Gómez-Lim, M.A. Production and purification of immunologically active core protein p24 from HIV-1 fused to ricin toxin B subunit in E. coli. Virol. J. 2009, 6, 1–11, doi:10.1186/1743-422X-6-1.
[19]  Lin, J.Y.; Tserng, K.Y.; Chen, C.C.; Tung, T.C. Abrin and ricin: new anti-tumor substances. Nature 1970, 227, 292–293, doi:10.1038/227292a0.
[20]  Ehrlich, P. The Collected Papers of Paul Ehrlich; Himmelweit, F., Marquardt, D., Dale, S.S., Eds.; Pergamon Press: Oxford, UK, 1957; pp. 596–618.
[21]  Marshall, S.A.; Lazar, G.A.; Chirino, A.J.; Desjarlais, J.R. Rational design and engineering of therapeutic proteins. Drug Discov. Today 2003, 8, 212–221, doi:10.1016/S1359-6446(03)02610-2.
[22]  Vitetta, E.S.; Thorpe, P.E.; Uhr, J.W. Immunotoxins: magic bullets or misguided missiles? Immunol. Today 1993, 14, 252–259, doi:10.1016/0167-5699(93)90041-I.
[23]  Brinkmann, U.; Pastan, I. Immunotoxins against cancer. Biochim. Biophys. Acta 1994, 1198, 27–45.
[24]  Kreitman, R.J.; Pastan, I. Recombinant toxins. Adv. Pharmacol. 1994, 28, 193–219, doi:10.1016/S1054-3589(08)60496-2.
[25]  Brinkley, M. A brief survey of methods for preparing protein conjugates with dyes, haptens, and cross-linking reagents. Bioconjug. Chem. 1992, 3, 2–13, doi:10.1021/bc00013a001.
[26]  Thorpe, P.E.; Wallace, P.M.; Knowles, P.P.; Relf, M.G.; Brown, A.N.; Watson, G.J.; Blakey, D.C.; Newell, D.R. Improved antitumor effects of immunotoxins prepared with deglycosylated ricin A-chain and hindered disulfide linkages. Cancer Res. 1988, 48, 6396–6403.
[27]  FitzGerald, D.; Idziorek, T.; Batra, J.K.; Willingham, M.; Pastan, I. Antitumor activity of a thioether-linked immunotoxin: OVB3-PE. Bioconjug. Chem. 1990, 1, 264–268, doi:10.1021/bc00004a006.
[28]  Lambert, J.M.; Goldmacher, V.S.; Collinson, A.R.; Nadler, L.M.; Bl?ttler, W.A. An immunotoxin prepared with blocked ricin: a natural plant toxin adapted for therapeutic use. Cancer Res. 1991, 51, 6236–6242.
[29]  Ghetie, V.; Vitetta, E.S. Chemical construction of immunotoxins. Mol. Biotechnol. 2001, 18, 251–268, doi:10.1385/MB:18:3:251.
[30]  Brinkmann, U.; Reiter, Y.; Jung, S.H.; Lee, B.; Pastan, I. A recombinant immunotoxin containing a disulfide-stabilized Fv fragment. Proc. Natl. Acad. Sci. USA 1993, 90, 7538–7542, doi:10.1073/pnas.90.16.7538.
[31]  Krolick, K.A.; Villemez, C.; Isakson, P.; Uhr, J.W.; Vitetta, E.S. Selective killing of normal or neoplastic B cells by antibodies coupled to the A chain of ricin. Proc. Natl. Acad. Sci. USA 1980, 77, 5419–5423, doi:10.1073/pnas.77.9.5419.
[32]  Fulton, R.J.; Uhr, J.W.; Vitetta, E.S. In vivo therapy of the BCL1 tumor: Effect of immunotoxin valency and deglycosylation of the ricin A chain. Cancer Res. 1988, 48, 2626–2631.
[33]  Bourrie, B.J.; Casellas, P.; Blythman, H.E.; Jansen, F.K. Study of the plasma clearance of antibody—Ricin-A-chain immunotoxins. Evidence for specific recognition sites on the A chain that mediate rapid clearance of the immunotoxin. Eur. J. Biochem. 1986, 155, 1–10, doi:10.1111/j.1432-1033.1986.tb09451.x.
[34]  Blakey, D.C.; Watson, G.J.; Knowles, P.P.; Thorpe, P.E. Effect of chemical deglycosylation of ricin A chain on the in vivo fate and cytotoxic activity of an immunotoxin composed of ricin A chain and anti-Thy 1.1 antibody. Cancer Res. 1987, 47, 947–952.
[35]  Olsnes, S. The history of ricin, abrin and related toxins. Toxicon 2004, 44, 361–370, doi:10.1016/j.toxicon.2004.05.003.
[36]  Ramakrishnan, S.; Bjorn, M.J.; Houston, L.L. Recombinant ricin A chain conjugated to monoclonal antibodies: Improved tumor cell inhibition in the presence of lysosomotropic compounds. Cancer Res. 1989, 49, 613–617.
[37]  Bilge, A.; Howell-Clark, J.; Ramakrishnan, S.; Press, O.W. Degradation of ricin A chain by endosomal and lysosomal enzymes-the protective role of ricin B chain. Ther. Immunol. 1994, 1, 197–204.
[38]  Sandvig, K.; van Deurs, B. Endocytosis, intracellular transport, and cytotoxic action of Shiga toxin and ricin. Physiol. Rev. 1996, 76, 949–966.
[39]  van Horssen, P.J.; van Oosterhout, Y.V.; Evers, S.; Backus, H.H.; van Oijen, M.G.; Bongaerts, R.; de Witte, T.; Preijers, F.W. Influence of cytotoxicity enhancers in combination with human serum on the activity of CD22-recombinant ricin A against B cell lines, chronic and acute lymphocytic leukemia cells. Leukemia 1999, 13, 241–249, doi:10.1038/sj.leu.2401262.
[40]  Frankel, A.E.; FitzGerald, D.; Siegall, C.; Press, O.W. Advances in immunotoxin biology and therapy: a summary of the Fourth International Symposium on Immunotoxins. Cancer Res. 1996, 56, 926–932.
[41]  Frankel, A.E.; Kreitman, R.J.; Sausville, E.A. Targeted toxins. Clin. Cancer Res. 2000, 6, 326–334.
[42]  Laske, D.W.; Youle, R.J.; Oldfield, E.H. Tumor regression with regional distribution of the targeted toxin TF-CRM107 in patients with malignant brain tumors. Nat. Med. 1997, 3, 1362–1368.
[43]  Kreitman, R.J. Immunotoxins in cancer therapy. Curr. Opin. Immunol. 1999, 11, 570–578, doi:10.1016/S0952-7915(99)00005-9.
[44]  Kreitman, R.J.; Pastan, I. Immunotoxins in the treatment of hematologic malignancies. Curr. Drug Targets 2006, 7, 1301–1311, doi:10.2174/138945006778559139.
[45]  Schnell, R.; Vitetta, E.; Schindler, J.; Borchmann, P.; Barth, S.; Ghetie, V.; Hell, K.; Drillich, S.; Diehl, V.; Engert, A. Treatment of refractory Hodgkin's lymphoma patients with an anti-CD25 ricin A-chain immunotoxin. Leukemia 2000, 14, 1291–1235.
[46]  Schnell, R.; Staak, O.; Borchmann, P.; Schwartz, C.; Matthey, B.; Hansen, H.; Schindler, J.; Ghetie, V.; Vitetta, E.S.; Diehl, V.; Engert, A. A Phase I study with an anti-CD30 ricin A-chain immunotoxin (Ki-4.dgA) in patients with refractory CD30+ Hodgkin's and non-Hodgkin's lymphoma. Clin. Cancer Res. 2002, 8, 1779–1786.
[47]  Schnell, R.; Borchmann, P.; Staak, J.O.; Schindler, J.; Ghetie, V.; Vitetta, E.S.; Engert, A. Clinical evaluation of ricin A-chain immunotoxins in patients with Hodgkin's lymphoma. Ann. Oncol. 2003, 14, 729–736.
[48]  Engert, A.; Diehl, V.; Schnell, R.; Radszuhn, A.; Hatwig, M.T.; Drillich, S.; Sch?n, G.; Bohlen, H.; Tesch, H.; Hansmann, M.L.; et al. A phase-I study of an anti-CD25 ricin A-chain immunotoxin (RFT5-SMPT-dgA) in patients with refractory Hodgkin's lymphoma. Blood 1997, 89, 403–410.
[49]  Schnell, R.; Englert, A. Ricin immunotoxins in lymphomas: Clinical applications. In Cytotoxins and Immunotoxins for Cancer Therapy: Clinical Applications; Kawakami, K., Aggarwal, B.B., Puri, R.K., Eds.; CRC Press: Boca Raton, FL, USA, 2004; pp. 73–79.
[50]  Furman, R.R.; Grossbard, M.L.; Johnson, J.L.; Pecora, A.L.; Cassileth, P.A.; Jung, S.H.; Peterson, B.A.; Nadler, L.M.; Freedman, A.; Bayer, R.L.; et al. A phase III study of anti-B4-blocked ricin as adjuvant therapy post-autologous bone marrow transplant: CALGB 9254. Leuk. Lymphoma 2011, 52, 587–596, doi:10.3109/10428194.2010.543714.
[51]  Amlot, P.L.; Stone, M.J.; Cunningham, D.; Fay, J.; Newman, J.; Collins, R.; May, R.; McCarthy, M.; Richardson, J.; Ghetie, V.; et al. A phase I study of an anti-CD22-deglycosylated ricin A chain immunotoxin in the treatment of B-cell lymphomas resistant to conventional therapy. Blood 1993, 82, 2624–2633.
[52]  Sausville, E.A.; Headlee, D.; Stetler-Stevenson, M.; Jaffe, E.S.; Solomon, D.; Figg, W.D.; Herdt, J.; Kopp, W.C.; Rager, H.; Steinberg, S.M.; et al. Continuous infusion of the anti-CD22 immunotoxin IgG-RFB4-SMPT-dgA in patients with B-cell lymphoma: A phase I study. Blood 1995, 85, 3457–3465.
[53]  Messmann, R.A.; Vitetta, E.S.; Headlee, D.; Senderowicz, A.M.; Figg, W.D.; Schindler, J.; Michiel, D.F.; Creekmore, S.; Steinberg, S.M.; Kohler, D.; et al. A phase I study of combination therapy with immunotoxins IgG-HD37-deglycosylated ricin A chain (dgA) and IgG-RFB4-dgA (Combotox) in patients with refractory CD19(+), CD22(+) B cell lymphoma. Clin. Cancer Res. 2000, 6, 1302–1313.
[54]  Schmidberger, H.; King, L.; Lasky, L.C.; Vallera, D.A. Antitumor activity of L6-ricin immunotoxin against the H2981-T3 lung adenocarcinoma cell line in vitro and in vivo. Cancer Res. 1990, 50, 3249–3256.
[55]  Hellstr?m, I.; Horn, D.; Linsley, P.; Brown, J.P.; Brankovan, V.; Hellstr?m, K.E. Monoclonal mouse antibodies raised against human lung carcinoma. Cancer Res. 1986, 46, 3917–3923.
[56]  Laske, D.W.; Muraszko, K.M.; Oldfield, E.H.; DeVroom, H.L.; Sung, C.; Dedrick, R.L.; Simon, T.R.; Colandrea, J.; Copeland, C.; Katz, D.; et al. Intraventricular immunotoxin therapy for leptomeningeal neoplasia. Neurosurgery 1997, 41, 1039–1049, doi:10.1097/00006123-199711000-00005.
[57]  Goldmacher, V.S.; Bourret, L.A.; Levine, B.A.; Rasmussen, R.A.; Pourshadi, M.; Lambert, J.M.; Anderson, K.C. Anti-CD38-blocked ricin: an immunotoxin for the treatment of multiple myeloma. Blood 1994, 84, 3017–3025.
[58]  Epstein, C.; Lynch, T.; Shefner, J.; Wen, P.; Maxted, D.; Braman, V.; Ariniello, P.; Coral, F.; Ritz, J. Use of the immunotoxin N901-blocked ricin in patients with small-cell lung cancer. Int. J. Cancer Suppl. 1994, 8, 57–59.
[59]  Lynch, T.J., Jr.; Lambert, J.M.; Coral, F.; Shefner, J.; Wen, P.; Blattler, W.A.; Collinson, A.R.; Ariniello, P.D.; Braman, G.; Cook, S.; et al. Immunotoxin therapy of small-cell lung cancer: a phase I study of N901-blocked ricin. J. Clin. Oncol. 1997, 15, 723–734.
[60]  Wang, H.B.; Xia, F.; Ge, J.; Yin, J.; Tan, L.S.; Zhang, P.D.; Zhong, J. Co-application of ricin A chain and a recombinant adenovirus expressing ricin B chain as a novel approach for cancer therapy. Acta Pharmacol. Sin. 2007, 28, 657–662, doi:10.1111/j.1745-7254.2007.00560.x.
[61]  van Deus, B.; Petersem, O.W.; Sudan, S.; Olsnes, S.; Sandvig, K. Receptor-mediated enocytosis of ricin-colloidal gold conjugate in Vero cells: Intracellular routing to vacuolar and tabulo-vesicular portions of the endosomal system. Exp. Cell Res. 1985, 159, 287–304, doi:10.1016/S0014-4827(85)80003-3.
[62]  Sandvig, K.; Pust, S.; Skotland, T.; van Deurs, B. Clathrin-independent endocytosis: mechanisms and function. Curr. Opin. Cell Biol. 2011, 23, 413–420, doi:10.1016/j.ceb.2011.03.007.
[63]  Rodal, S.K.; Skretting, G.; Garred, O.; Vilhardt, F.; van Deurs, B.; Sandvig, K. Extraction of cholesterol with metyl-β-cyclodextrin perturbs formation of clathn-coated endocytic vesicles. Mol. Biol. Cell 1999, 10, 961–974.
[64]  Blum, J.S.; Fiani, M.L.; Stahl, P.D. Proteolytic cleavage of ricin A chain in endosomal vesicles. J. Biol. Chem. 1991, 266, 22091–22095.
[65]  Brech, A.; Kjeken, R.; Synnes, M.; Berg, T.; Roos, N.; Prydz, K. Endocytosed ricin and asialoorosomucoid follow different intracellular pathways in hepatocytes. Biochim. Biophys. Acta 1998, 1373, 195–208, doi:10.1016/S0005-2736(98)00104-7.
[66]  Sandvig, K.; van Deurs, B. Membrane traffic exploited by protein toxins. Ann. Rev. Cell Dev. Biol. 2002, 18, 1–14, doi:10.1146/annurev.cellbio.18.011502.142107.
[67]  van Deurs, B.; Tonnessen, T.I.; Petersen, O.W.; Sandvig, K.; Olsnes, S. Routing of internalized ricin and ricin conjugates to the Golgi complex. J. Cell Biol. 1986, 102, 37–47, doi:10.1083/jcb.102.1.37.
[68]  van Deurs, B.; Sandvig, K.; Petersen, O.W.; Olsnes, S.; Simons, K.; Griffiths, G. Estimation of the amount of internalized ricin that reaches the trans-Golgi network. J. Cell Biol. 1998, 106, 253–267.
[69]  Yoshida, T.; Chen, C.C.; Zhang, M.S.; Wu, H.C. Disruption of the Golgi apparatus by brefeldin A inhibits the cytotoxicity of ricn, modeccin, and Pseudomonas toxin. Exp. Cell Res. 1991, 192, 389–395, doi:10.1016/0014-4827(91)90056-Z.
[70]  Sandvig, K.; Prydz, K.; Hansen, S.H.; van Deurs, B. Ricin transport in brefeldin A-treated cells: correlation between Golgi structure and toxic effect. J. Cell Biol. 1991, 115, 971–981, doi:10.1083/jcb.115.4.971.
[71]  Rapak, A.; Falnes, P.O.; Olsnes, S. Retrograde transport of mutant ricin to the endoplasmic reticulum with subsequent translocation to cytosol. Proc. Natl. Acad. Sci. USA 1997, 94, 3783–3788, doi:10.1073/pnas.94.8.3783.
[72]  Leitinger, B.; Brown, J.L.; Spiess, M. Tagging secretory and membrane proteins with a tyrosine sulfation site. Tyrosine sulfation precedes galactosylation and sialylation in COS-7 cells. J. Biol. Chem. 1994, 269, 8115–8121.
[73]  Llorente, A.; Rapak, A.; Schmid, S.L.; van Deurs, B.; Sandvig, K. Expression of mutant dynamin inhibits toxicity and transport of endocytosed ricin to the golgi apparatus. J. Cell Biol. 1998, 140, 1–11, doi:10.1083/jcb.140.1.1.
[74]  Iversen, T.G.; Skretting, G.; Llorente, A.; Nicoziani, P.; van Deurs, B.; Sandvig, K. Endosome to golgi transport of ricin is independent of clathrin and of the Rab9- and Rab11-GTPases. Mol. Biol. Cell 2001, 12, 2099–2107.
[75]  Sandvig, K.; Grimmer, S.; Lauvrak, S.U.; Torgersen, M.L.; Skretting, G.; van Deurs, B.; Iversen, T.G. Pathways followed by ricin and Shiga toxin into cells. Histochem. Cell Biol. 2002, 117, 131–141, doi:10.1007/s00418-001-0346-2.
[76]  Grimmer, S.; Iversen, T.G.; van Deurs, B.; Sandvig, K. Endosome to golgi transport of ricin is regulated by cholesterol. Mol. Biol. Cell 2000, 11, 4205–4216.
[77]  Birkeli, K.A.; Llorente, A.; Torgersen, M.L.; Keryer, G.; Tasken, K.; Sandvig, K. Endosome to Golgi transport is regulated is regulated by protein kinase type II alfa. J. Biol. Chem. 2003, 278, 1991–1997.
[78]  Wales, R.; Roberts, L.M.; Lord, J.M. Addition of an endoplasmic reticulum retrival sequence to ricin A chain significantly increases its cytotoxicity to mammalian cells. J. Biol. Chem. 1993, 268, 23986–23990.
[79]  Wales, R.; Chaddock, J.A.; Roberts, L.M.; Lord, J.M. Addition of an ER retention signal to the ricin rycin chain increases the cytotoxicity of the holotoxin. Exp. Cell Res. 1992, 203, 1–4, doi:10.1016/0014-4827(92)90032-4.
[80]  Day, P.J.; Owens, S.R.; Wesche, J.; Olsnes, S.; Roberts, L.M.; Lord, J.M. An interaction between ricin and calreticulin that may have implications for toxin trafficking. J. Biol. Chem. 2001, 267, 7202–7208.
[81]  Girod, A.; Storrie, B.; Simpson, J.C.; Johannes, L.; Goud, B.; Roberts, L.M.; Lord, J.M.; Nilsson, T.; Pepperkok, R. Evidence for a COP-I-independent transport route from the golgi complex to the endoplasmic reticulum. Nat. Cell Biol. 1999, 1, 423–430, doi:10.1038/15658.
[82]  Chen, A.; Abujarour, R.J.; Draper, R.K. Evidence that the transport of ricin to the cytoplasm is independent of both Rab6A and COPI. J. Cell Sci. 2003, 116, 3503–3510, doi:10.1242/jcs.00641.
[83]  Llorente, A.; Lauvrak, S.U.; van Deurs, B.; Sandvig, K. Induction of direct endosome to endoplasmic reticulum transport in Chinese hamster ovary (CHO) cells (LdlF) with a temperature-sensitive defect in epsilon-coatomer protein (epsilon-COP). J. Biol. Chem. 2003, 278, 35850–35855.
[84]  Spooner, R.A.; Watson, P.D.; Marsden, C.J.; Smith, D.C.; Moore, K.A.; Cook, J.P.; Lord, J.M.; Roberts, L.M. Protein disulphide-isomerase reduces ricin to its A and B chains in the endoplasmic reticulum. Biochem. J. 2004, 383, 285–293, doi:10.1042/BJ20040742.
[85]  Ellgaard, L.; Helenius, A. Quality control in the endoplasmic reticulum. Nat. Rev. Mol. Cell Biol. 2003, 4, 181–191.
[86]  Lord, J.M.; Roberts, L.M. Toxin entry: retrograde transport through the secretory pathway. J. Cell Biol. 1998, 140, 733–736, doi:10.1083/jcb.140.4.733.
[87]  Molinari, M.; Calanca, V.; Galli, C.; Lucca, P.; Paganetti, P. Role of EDEM in the release of misfolded glycoproteins from the calnexin cycle. Science 2003, 299, 1397–1400, doi:10.1126/science.1079474.
[88]  Oda, Y.; Hosokawa, N.; Wada, I.; Nagata, K. EDEM as an acceptor of terminally misfolded glycoproteins released from calnexin. Science 2003, 299, 1394–1397, doi:10.1126/science.1079181.
[89]  Simpson, J. C.; Lord, J. M.; Roberts, L. M. Point mutations in the hydrophobic C-terminal region of ricin A chain indicate that Pro250 plays a key role in membrane translocation. Eur. J. Biochem. 1995, 232, 458–463, doi:10.1111/j.1432-1033.1995.tb20831.x.
[90]  Yan, Q.; Li, X.P.; Tumer, N.E. N-glycosylation does not affect the catalytic activity of ricin a chain but stimulates cytotoxicity by promoting its transport out of the endoplasmic reticulum. Traffic 2012, 13, 1508–1521.
[91]  Simpson, J.C.; Roberts, L.M.; Romisch, K.; Davey, J.; Wolf, D.H.; Lord, J.M. Ricin A chain utilizes the endoplasmic reticulum-associated protein degradation pathway to enter the cytosol of yeast. FEBS Lett. 1999, 459, 80–84, doi:10.1016/S0014-5793(99)01222-3.
[92]  Moreau, D.; Kumar, P.; Wang, S.C.; Chaumet, A.; Chew, S.Y.; Chevalley, H.; Bard, F. Genome-wide RNAi screens identify genesrequired for ricin and PE intoxications. Dev. Cell 2011, 21, 1–14, doi:10.1016/j.devcel.2011.07.002.
[93]  Mayerhofer, P.U.; Cook, J.P.; Wahlman, J.; Pinheiro, T.J.T.; Moore, K.A.H.; Lord, J.M.; Johnson, A.E.; Roberts, L.M. Ricin A chain insertion into endoplasmic reticulum membranes is triggered by a temperature increase to 37°C. J. Biol. Chem. 2009, 284, 10232–10242.
[94]  Agent, R.H.; Roberts, L.M.; Wales, R.; Robertus, J.D.; Lord, J.M. Introduction of a disulfide bond into ricin A chain decreases the cytotoxicity of the ricin holotoxin. J. Biol. Chem. 1994, 269, 26705–26710.
[95]  Agent, R.H.; Parrott, A.M.; Day, P.J.; Roberts, L.M.; Stockley, P.G.; Lord, J.M.; Radford, S.E. Ribosome-mediated holding of partially unfolded ricin A chain. J. Biol. Chem. 2000, 275, 9263–9269.
[96]  Spooner, R.A.; Hart, P.J.; Cook, J.P.; Pietroni, P.; Rogon, C.; Hohfeld, J.; Roberts, L.M.; Lord, J.M. Cytosolic chaperones influence the fate of a toxin dislocated from the endoplasmic reticulum. Proc. Natl. Acad. Sci. USA 2008, 105, 17408–17413, doi:10.1073/pnas.0809013105.
[97]  Hazes, B.; Read, R.J. Accumulating evidence suggests that several AB-toxins subvert the endoplasmic reticulum-associated protein degradation pathway to enter target cells. Biochemistry 1997, 36, 11051–11054, doi:10.1021/bi971383p.
[98]  Deeks, E.D.; Cook, J.P.; Day, P.J.; Smith, D.C.; Roberts, L.M.; Lord, J.M. The low lysine content of ricin A chain reduces the risk of proteolytic degradation after translocation from the endoplasmic reticulum to the cytosol. Biochemistry 2002, 41, 3405–3413.
[99]  Press, O.W.; Martin, P.J.; Thorpe, P.E.; Vitetta, E.S. Ricin A-chain containing immunotoxins directed against different epitopes on the CD2 molecule differ in their ability to kill normal and malignant T cells. J. Immunol. 1988, 141, 4410–4417.
[100]  Youle, R.J.; Neville, D.M., Jr. Kinetics of protein synthesis inactivation by ricin-anti-Thy 1.1 monoclonal antibody hybrids. Role of the ricin B subunit demonstrated by reconstitution. J. Biol. Chem. 1982, 257, 1598–1601.
[101]  Wied?ocha, A.; Sandvig, K.; Walzel, H.; Radzikowsky, C.; Olsnes, S. Internalization and action of an immunotoxin containing mistletoe lectin A-chain. Cancer Res. 1991, 51, 916–920.
[102]  Petkovich, M. Regulation of gene expression by vitamin A: The role of nuclear retinoic acid receptors. Ann. Rev. Nutr. 1992, 12, 443–471.
[103]  Sandvig, K.; Olsnes, S. Effects of retinoids and phorbol esters on the sensitivity of different cell lines to the polypeptide toxins modeccin, abrin, ricin and diphtheria. Biochem. J. 1981, 194, 821–827.
[104]  Wu, Y.N.; Gadina, M.; Tao-Cheng, J.H.; Youle, R.J. Retinoic acid disrupts the Golgi apparatus and increases the cytosolic routing of specific protein toxins. J. Cell Biol. 1994, 125, 743–753, doi:10.1083/jcb.125.4.743.
[105]  Timar, J.; McIntosh, D.P.; Henry, R.; Cumber, A.J.; Parnell, G.D.; Davies, A.J. The effect of ricin B chain on the intracellular trafficking of an A chain immunotoxin. Br. J. Cancer 1991, 64, 655–662, doi:10.1038/bjc.1991.377.
[106]  Manske, J.M.; Buchsbaum, D.J.; Vallera, D.A. The role of ricin B chain in the intracellular trafficking of anti-CD5 immunotoxins. J. Immunol. 1989, 142, 1755–1766.
[107]  McIntosh, D.P.; Edwards, D.C.; Cumber, A.J.; Parnell, G.D.; Dean, C.J.; Ross, W.C.; Forrester, J.A. Ricin B chain converts a non-cytotoxic antibody-ricin A chain conjugate into a potent and specific cytotoxic agent. FEBS Lett. 1983, 164, 17–20, doi:10.1016/0014-5793(83)80009-X.
[108]  Thiesen, H.J.; Juhl, H.; Arndt, R. Selective killing of human bladder cancer cells by combined treatment with A and B chain ricin antibody conjugates. Cancer Res. 1987, 47, 419–423.
[109]  Wawrzynczak, E.J.; Watson, G.J.; Cumber, A.J.; Henry, R.V.; Parnell, G.D.; Rieber, E.P.; Thorpe, P.E. Blocked and non-blocked ricin immunotoxins against the CD4 antigen exhibit higher cytotoxic potency than a ricin A chain immunotoxin potentiated with ricin B chain or with a ricin B chain immunotoxin. Cancer Immunol. Immunother. 1991, 32, 289–295, doi:10.1007/BF01789046.
[110]  Olsnes, S.; Phil, A. Toxic lectins and related proteins. In Toxic Lectins and Related Proteins in Molecular Action of Toxins and Viruses; Cohen, P., van Heyringen, S., Eds.; Elsevier: Amsterdam, Holland, 1982; pp. 51–105.
[111]  Moazed, D.; Robertson, J.M.; Noller, H.F. Interaction of elongation factors EF-G and EF-Tu with a conserved loop in 23S RNA. Nature 1988, 334, 362–364, doi:10.1038/334362a0.
[112]  Hartley, M.R.; Lord, J.M. Cytotoxic ribosome-inactivating lectins from plants. Biochim. Biophys. Acta 2004, 1701, 1–14, doi:10.1016/j.bbapap.2004.06.004.
[113]  Endo, Y.; Gluck, A.; Wool, I.G. Ribosomal RNA identity elements for ricin A-chain recognition and catalysis. J. Mol. Biol. 1991, 221, 193–207, doi:10.1016/0022-2836(91)80214-F.
[114]  Larsson, S.L.; Sloma, M.S.; Nyg?rd, O. Conformational changes in the structure of domains II and V of 28S rRNA in ribosomes treated with the translational inhibitors ricin or alpha-sarcin. Biochim. Biophys. Acta 2002, 1577, 53–62.
[115]  Endo, Y.; Tsurugi, K. The RNA N-glycosidase activity of ricin A-chain. The characteristics of the enzymatic activity of ricin A-chain with ribosomes and with rRNA. J. Biol. Chem. 1988, 263, 8735–8739.
[116]  Chiou, J.C.; Li, X.P.; Remach, M.; Ballesta, J.P.; Tumer, N.E. The ribosomal stalk is required for ribosome binding, depurination of the rRNA and cytotoxicity of ricin A chain in Saccharomyces cerevisiae. Mol Microbiol. 2008, 70, 1441–1452, doi:10.1111/j.1365-2958.2008.06492.x.
[117]  May, K.L.; Li, X.P.; Martínez-Azorín, F.; Ballesta, J.P.; Grela, P.; Tchórzewski, M.; Tumer, N.E. The P1/P2 proteins of the human ribosomal stalk are required for ribosome binding and depurination by ricin in human cells. FEBS J. 2012, 279, 3925–3936, doi:10.1111/j.1742-4658.2012.08752.x.
[118]  May, K.L.; Yan, Q.; Tumer, N.E. Targeting ricin to the ribosome. Toxicon, 2013.
[119]  Li, X.P.; Chiou, J.C.; Remach, M.; Ballesta, J.P.; Tumer, N.E. A two-step binding model proposed for the electrostatic interactions of ricin a chain with ribosomes. Biochemistry 2009, 48, 3853–3863, doi:10.1021/bi802371h.
[120]  Dai, J.; Zhao, L.; Yang, H.; Guo, H.; Fan, K.; Wang, H.; Qian, W.; Zhang, D.; Li, B.; Wang, H.; Guo, Y. Identification of a novel functional domain of ricin responsible for its potent toxicity. J. Biol. Chem. 2011, 14, 12166–12171.
[121]  Morris, K.N.; Wool, I.G. Determination by systematic deletion of the amino acids essential for catalysis by ricin A chain. Proc. Natl. Acad. Sci. USA 1992, 89, 4869–4673, doi:10.1073/pnas.89.11.4869.
[122]  Day, P.J.; Ernst, S.R.; Frankel, A.E.; Monzingo, A.F.; Pascal, J.M.; Molina-Svinth, M.C.; Robertus, J.D. Structure and activity of an active site substitution of ricin A chain. Biochemistry 1996, 35, 11098–11103, doi:10.1021/bi960880n.
[123]  Flexner, S. The histological changes produced by ricin and abrin intoxications. J. Exp. Med. 1987, 2, 197–216, doi:10.1084/jem.2.2.197.
[124]  Griffiths, G.D.; Leek, M.D.; Gee, D.J. The toxic plant proteins ricin and abrin induce apoptotic changes in mammalian lymphoid tissues and intestine. J. Pathol. 1987, 151, 221–229, doi:10.1002/path.1711510310.
[125]  Hughes, J.N.; Lindsay, C.D.; Griffiths, G.D. Morphology of ricin and abrin exposed endothelial cells is consistent with apoptotic cell death. Hum. Exp. Toxicol. 1996, 15, 443–451, doi:10.1177/096032719601500513.
[126]  Day, P.J.; Pinheiro, T.J.; Roberts, L.M.; Lord, J.M. Binding of ricin A-chain to negatively charged phospholipid vesicles leads to protein structural changes and destabilizes the lipid bilayer. Biochemistry 2002, 41, 2836–2843, doi:10.1021/bi012012i.
[127]  Kumar, O.; Sugendran, K.; Vijayaraghavan, R. Oxidative stress associated hepatic and renal toxicity induced by ricin in mice. Toxicon 2003, 41, 333–338, doi:10.1016/S0041-0101(02)00313-6.
[128]  Sandvig, K.; van Deurs, B. Toxin-induced cell lysis: protection by 3-methyladenine and cycloheximide. Exp. Cell Res. 1992, 200, 253–262, doi:10.1016/0014-4827(92)90171-4.
[129]  Oda, T.; Komatsu, N.; Muramatsu, T. Cell lysis induced by ricin D and ricin E in various cell lines. Biosci. Biotechnol. Biochem. 1997, 61, 291–297, doi:10.1271/bbb.61.291.
[130]  Oda, T.; Komatsu, N.; Muramatsu, T. Diisopropylfluorophosphate (DFP) inhibits ricin-induced apoptosis of MDCK cells. Biosci. Biotechnol. Biochem. 1998, 62, 325–333, doi:10.1271/bbb.62.325.
[131]  Komatsu, N.; Oda, T.;.Muramatsu, T. Involvement of both caspase-like proteases and serine proteases in apoptotic cell death induced by ricin, modeccin, diphtheria toxin, and Pseudomonas toxin. J. Biochem. 1998, 124, 1038–1044, doi:10.1093/oxfordjournals.jbchem.a022197.
[132]  Ho, P.K.; Hawkins, C.J. Mammalian initiator apoptotic caspases. FEBS J. 2005, 272, 5436–5453, doi:10.1111/j.1742-4658.2005.04966.x.
[133]  Lawen, A. Apoptosis-an introduxction. BioEssays 2003, 25, 888–896, doi:10.1002/bies.10329.
[134]  Williams, J.M.; Lea, N.; Lord, J.M.; Roberts, L.M.; Milford, D.V.; Taylor, C.M. Comparison of ribosome-inactivating proteins in the induction of apoptosis. Toxicol. Lett. 1997, 9, 121–127.
[135]  Rao, P.V.; Jayaraj, R.; Bhaskar, A.S.; Kumar, O.; Bhattacharya, R.; Saxena, P.; Dash, P.K.; Vijayaraghavan, R. Mechanism of ricin-induced apoptosis in human cervical cancer cells. Biochem. Pharmacol. 2005, 69, 855–865, doi:10.1016/j.bcp.2004.11.010.
[136]  Wu, Y.H.; Shih, S.F.; Lin, JY. Ricin triggers apoptotic morphological changes through caspase-3 cleavage of BAT3. J. Biol. Chem. 2004, 279, 19264–19275, doi:10.1074/jbc.M307049200.
[137]  Komatsu, N.; Nakagawa, M.; Oda, T.; Muramatsu, T. Depletion of intracellular NAD(+) and ATP levels during ricin-induced apoptosis through the specific ribosomal inactivation results in the cytolysis of U937 cells. J. Biochem. 2000, 128, 463–470, doi:10.1093/oxfordjournals.jbchem.a022775.
[138]  Hakmé, A.; Wong, H.K.; Dantzer, F.; Schreiber, V. The expanding field of poly(ADPribosyl)ation reactions. EMBO Rep. 2008, 9, 1094–1100, doi:10.1038/embor.2008.191.
[139]  Barbieri, L.; Brigotti, M.; Perocco, P.; Carnicelli, D.; Ciani, M.; Mercatali, L.; Stirpe, F. Ribosome-inactivating proteins depurinate poly(ADP-ribosyl)ated poly(ADP-ribose) polymerase and have transforming activity for 3T3 fibroblasts. FEBS Lett. 2003, 5383, 178–182.
[140]  Sestili, P.; Alfieri, R.; Carnicelli, D.; Martinelli, C.; Barbieri, L.; Stirpe, F.; Bonelli, M.; Petronini, P.G.; Brigotti, M. Shiga toxin 1 and ricin inhibit the repair of H2O2-induced DNA single strand breaks in mammalian cells. DNA Repair 2005, 4, 271–277, doi:10.1016/j.dnarep.2004.09.007.
[141]  Peumans, W.J.; Hao, Q.; van Damme, E.J.M. Ribosome-inactivating proteins from plants: morethan RNA N-glycosidases? FASEB J. 2001, 15, 1493–1506, doi:10.1096/fj.00-0751rev.
[142]  Brigotti, M.; Alfieri, R.; Sestili, P.; Bonelli, M.; Petronini, P.G.; Guidarelli, A.; Barbieri, L.; Stirpe, F.; Sperti, S. Damage to nuclear DNA induced by Shiga toxin 1 and ricin in human endothelial cells. FASEB J. 2002, 16, 365–372, doi:10.1096/fj.01-0521com.
[143]  Li, M.; Pestka, J.J. Comparative induction of 28S ribosomal RNA cleavage by ricin and the trichothecenes deoxynivalenol and T-2 toxin in the macrophage. Toxicol. Sci. 2008, 105, 67–78, doi:10.1093/toxsci/kfn111.
[144]  Gray, J.S.; Bae, H.K.; Li, J.C.B.; Lau, A.S.; Pestka, J.J. Double-stranded RNA-activated protein kinase mediates induction of interleukin-8 expression by deoxynivalenol, Shiga toxin 1, and ricin in monocytes. Toxicol. Sci. 2008, 105, 322–330, doi:10.1093/toxsci/kfn128.
[145]  Liu, X.; Zou, H.; Slaughter, C.; Wang, X. DFF, a heterodimeric protein that functions downstream of caspase-3 to trigger DNA fragmentation during apoptosis. Cell 1997, 89, 175–784.
[146]  Desmots, F.; Russell, H.R.; Michel, D.; McKinnon, P.J. Scythe regulates apoptosis-inducing factor stability during endoplasmic reticulum stress-induced apoptosis. J. Biol. Chem. 2008, 283, 3264–3271.
[147]  Borutaite, V. Mitochondria as decision-makers in cell death. Environ. Mol. Mutagen. 2010, 51, 406–416.
[148]  Circu, M.L.; Aw, T.Y. Reactive oxygen species, cellular redox systems, and apoptosis. Free Radic. Biol. Med. 2010, 48, 749–762, doi:10.1016/j.freeradbiomed.2009.12.022.
[149]  Zhang, C.; Gong, Y.; Ma, H.; An, C.; Chen, D.; Chen, Z.L. Reactive oxygen species involved in trichosanthin-induced apoptosis of human choriocarcinoma cells. Biochem. J. 2001, 355, 653–661.
[150]  Hu, R.; Zhai, Q.; Liu, W.; Liu, X. An insight into the mechanism of cytotoxicity of ricin to hepatoma cell: roles of Bcl-2 family proteins, caspases, Ca(2+)-dependent proteases and protein kinase C. J. Cell Biochem. 2001, 81, 583–593, doi:10.1002/jcb.1076.
[151]  Adams, J.M.; Cory, S. The Bcl-2 protein family: arbiters of cell survival. Science 1998, 281, 1322–1326, doi:10.1126/science.281.5381.1322.
[152]  Tamura, T.; Oda, T.; Muramatsu, T. Resistance against ricin-induced apoptosis in a brefeldin A-resistant mutant cell line (BER-40) of Vero cells. J. Biochem. 2002, 132, 441–449, doi:10.1093/oxfordjournals.jbchem.a003241.
[153]  Polito, L.; Bolognesi, A.; Tazzari, P.L.; Farini, V.; Lubelli, C.; Zinzani, P.L.; Ricci, F.; Stirpe, F. The conjugate Rituximab/saporin-S6 completely inhibits clonogenic growth of CD20-expressing cells and produces a synergistic toxic effect with Fludarabine. Leukemia 2004, 18, 1215–1222, doi:10.1038/sj.leu.2403378.
[154]  Martínez-Torrecuadrada, J.L.; Cheung, L.H.; López-Serra, P.; Barderas, R.; Ca?amero, M.; Ferreiro, S.; Rosenblum, M.G.; Casal, J.I. Antitumor activity of fibroblast growth factor receptor 3-specific immunotoxins in a xenograft mouse model of bladder carcinoma is mediated by apoptosis. Mol. Cancer Ther. 2008, 7, 862–873, doi:10.1158/1535-7163.MCT-07-0394.
[155]  Baluna, R.; Coleman, E.; Jones, C.; Ghetie, V.; Vitetta, E.S. The effect of a monoclonal antibody coupled to ricin A chain-derived peptides on endothelial cells in vitro: Insights into toxin-mediated vascular damage. Exp. Cell Res. 2000, 258, 417–424, doi:10.1006/excr.2000.4954.
[156]  Zhou, X.X.; Ji, F.; Zhao, J.L.; Cheng, L.F.; Xu, C.F. Anti-cancer activity of anti-p185HER-2 ricin A chain immunotoxin on gastric cancer cells. J. Gastroenterol. Hepatol. 2010, 25, 1266–1275, doi:10.1111/j.1440-1746.2010.06287.x.
[157]  Lim, J.W.; Kim, H.; Kim, K.H. Nuclear factor-kappaB regulates cyclooxygenase-2 expression and cell proliferation in human gastric cancer cells. Lab. Invest. 2001, 81, 349–360, doi:10.1038/labinvest.3780243.
[158]  Sun, Y.; Tang, X.M.; Half, E.; Kuo, M.T.; Sinicrope, F.A. Cyclooxygenase-2 overexpression reduces apoptotic susceptibility by inhibiting the cytochrome c-dependent apoptotic pathway in human colon cancer cells. Cancer Res. 2002, 62, 6323–6328.
[159]  Leung, W.K.; To, K.F.; Ng, Y.P.; Lee, T.L.; Lau, J.Y.; Chan, F.K.; Ng, E.K.; Chung, S.C.; Sung, J.J. Association between cyclo-oxygenase-2 overexpression and missense p53 mutations in gastric cancer. Br. J. Cancer 2001, 84, 335–339.
[160]  Chen, C.N.; Hsieh, F.J.; Cheng, Y.M.; Chang, K.J.; Lee, P.H. Expression of inducible nitric oxide synthase and cyclooxygenase-2 in angiogenesis and clinical outcome of human gastric cancer. J. Surg. Oncol. 2006, 94, 226–233, doi:10.1002/jso.20372.
[161]  Sun, Y.; Tang, X.M.; Half, E.; Kuo, M.T.; Sinicrope, F.A. Cyclooxygenase-2 overexpression reduces apoptotic susceptibility by inhibiting the cytochrome c-dependent apoptotic pathway in human colon cancer cells. Cancer Res. 2002, 62, 6323–6328.
[162]  Brinkmann, U.; Mansfield, E.; Pastan, I. Effects of BCL-2 overexpression on the sensitivity of MCF-7 breast cancer cells to ricin, diphtheria and Pseudomonas toxin and immunotoxins. Apoptosis 1997, 2, 192–198, doi:10.1023/A:1026468532413.
[163]  Sha, O.; Yew, D.T.; Ng, T.B.; Yuan, L.; Kwong, W.H. Different in vitro toxicities of structurally similar type I ribosome-inactivating proteins (RIPs). Toxicol. In Vitro 2010, 24, 1176–1182, doi:10.1016/j.tiv.2010.02.014.
[164]  Hasegawa, N.; Kimura, Y.; Oda, T.; Komatsu, N.; Muramatsu, T. Isolated ricin B-chain-mediated apoptosis in U937 cells. Biosci. Biotechnol. Biochem. 2000, 64, 1422–1429, doi:10.1271/bbb.64.1422.
[165]  Keppler-Hafkemeyer, A.; Brinkmann, U.; Pastan, I. Role of caspases in immunotoxin-induced apoptosis of cancer cells. Biochemistry 1998, 37, 16934–16942, doi:10.1021/bi980995m.
[166]  Li, X.P.; Baricevic, M.; Saidasan, H.; Tumer, N.E. Ribosome depurination is not sufficient for ricin-mediated cell death in Saccharomyces cerevisiae. Infect. Immun. 2007, 75, 417–428, doi:10.1128/IAI.01295-06.
[167]  Jetzt, A.E.; Cheng, J.S.; Li, X.P.; Tumer, N.E.; Cohick, W.S. A relatively low level of ribosome depurination by mutant forms of ricin toxin A chain can trigger protein synthesis inhibition, cell signaling and apoptosis in mammalian cells. Int. J. Biochem. Cell Biol. 2012, 44, 2204–2211, doi:10.1016/j.biocel.2012.09.004.
[168]  Iordanov, M.S.; Pribnow, D.; Magun, J.L.; Dinh, T.H.; Pearson, J.A.; Magun, B.E. Ultraviolet radiation triggers the ribotoxic stress response in mammalian cells. J. Biol. Chem. 1998, 273, 15794–15803.
[169]  Jetzt, A.E.; Cheng, J.S.; Tumer, N.E.; Cohick, W.S. Ricin A-chain requires c-Jun N-terminal kinase to induce apoptosis in nontransformed epithelial cells. Int. J. Biochem. Cell Biol. 2009, 41, 2503–2510, doi:10.1016/j.biocel.2009.08.007.
[170]  Jung, Y.D.; Fan, F.; McConkey, D.J.; Jean, M.E.; Liu, W.; Reinmuth, N.; Stoeltzing, O.; Ahmad, S.A.; Parikh, A.A.; Mukaida, N.; Ellis, L.M. Role of P38 MAPK, AP-1, and NF-kappaB in interleukin-1beta-induced IL-8 expression in human vascular smooth muscle cells. Cytokine 2002, 18, 206–213.
[171]  Means, T.K.; Pavlovich, R.P.; Roca, D.; Vermeulen, M.W.; Fenton, M.J. Activation of TNF-alpha transcription utilizes distinct MAP kinase pathways in different macrophage populations. J. Leuk. Biol. 2000, 67, 885–893.
[172]  Thorpe, C.M.; Hurley, B.P.; Lincicome, L.L.; Jacewicz, M.S.; Keusch, G.T.; Acheson, D.W. Shiga toxins stimulate secretion of interleukin-8 from intestinal epithelial cells. Infect. Immun. 1999, 67, 5985–5993.
[173]  Licastro, F.; Morini, M.C.; Bolognesi, A.; Stirpe, F. Ricin induces the production of tumour necrosis factor-alpha and interleukin-1 beta by human peripheral-blood mononuclear cells. Biochem. J. 1993, 294, 517–520.
[174]  Yamasaki, C.; Nishikawa, K.; Zeng, X.T.; Katayama, Y.; Natori, Y.; Komatsu, N.; Oda, T.; Natori, Y. Induction of cytokines by toxins that have an identical RNA N-glycosidase activity: Shiga toxin, ricin, and modeccin. Biochim. Biophys. Acta 2004, 1671, 44–50, doi:10.1016/j.bbagen.2004.01.002.
[175]  Gonzalez, T.V.; Farrant, S.A.; Mantis, N.J. Ricin induces IL-8 secretion from human monocyte/macrophages by activating the p38 MAP kinase pathway. Mol. Immunol. 2006, 43, 1920–1923, doi:10.1016/j.molimm.2005.11.002.
[176]  Higuchi, S.; Tamura, T.; Oda, T. Cross-talk between the pathways leading to the induction of apoptosis and the secretion of tumor necrosis factor-alpha in ricin-treated RAW 264.7 cells. J. Biochem. 2003, 134, 927–929, doi:10.1093/jb/mvg224.
[177]  Korcheva, V.; Wong, J.; Corless, C.; Iordanov, M.; Magun, B. Administration of ricin induces a severe inflammatory response via nonredundant stimulation of ERK, JNK, and P38 MAPK and provides a mouse model of hemolytic uremic syndrome. Am. J. Pathol. 2005, 166, 323–339, doi:10.1016/S0002-9440(10)62256-0.
[178]  Wong, J.; Korcheva, V.; Jacoby, D.B.; Magun, B.E. Proinflammatory responses of human airway cells to ricin involve stress-activated protein kinases and NF-kappaB. Am. J. Physiol. Lung Cell Mol. Physiol. 2007, 293, L1385–L1394.
[179]  Tesh, V.L. The induction of apoptosis by Shiga toxins and ricin. Curr. Top. Microbiol. Immunol. 2012, 357, 137–178.
[180]  Liu, H.; Ma, Y.; Pagliari, L.J.; Perlman, H.; Yu, C.; Lin, A.; Pope, R.M. TNF-alpha-induced apoptosis of macrophages following inhibition of NF-kappa B: A central role for disruption of mitochondria. J. Immunol. 2004, 172, 1907–1915.
[181]  Papa, S.; Bubici, C.; Zazzeroni, F.; Pham, C.G.; Kuntzen, C.; Knabb, J.R.; Dean, K; Franzoso, G. The NF-kappaB-mediated control of the JNK cascade in the antagonism of programmed cell death in health and disease. Cell Death Differ. 2006, 13, 712–729, doi:10.1038/sj.cdd.4401865.
[182]  Tirasophon, W.; Welihinda, A.A.; Kaufman, R.J. A stress response pathway from the endoplasmic reticulum to the nucleus requires a novel bifunctional protein kinase/endoribonuclease (Ire1p) in mammalian cells. Genes Dev. 1998, 12, 1812–1824, doi:10.1101/gad.12.12.1812.
[183]  Harding, H.P.; Zhang, Y.; Ron, D. Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature 1999, 397, 271–274.
[184]  Ye, J.; Rawson, R.B.; Komuro, R.; Chen, X.; Davé, U.P.; Prywes, R.; Brown, M.S.; Goldstein, J.L. ER stress induces cleavage of membrane-bound ATF6 by the same proteases that process SREBPs. Mol. Cell 2000, 6, 1355–1364.
[185]  Hendershot, L.M. The ER function BiP is a master regulator of ER function. Mt. Sinai. J. Med. 2004, 71, 289–297.
[186]  Cox, J.S.; Shamu, C.E.; Walter, P. Transcriptional induction of genes encoding endoplasmic reticulum resident proteins requires a transmembrane protein kinase. Cell 1993, 73, 1197–1206, doi:10.1016/0092-8674(93)90648-A.
[187]  Mori, K. Signaling pathways in the unfolded protein response: Development from yeast to mammals. J. Biochem. 2009, 146, 743–750, doi:10.1093/jb/mvp166.
[188]  Wang, C.T.; Jetzt, A.E.; Cheng, J.S.; Cohick, W.S. Inhibition of the unfolded protein response by ricin a-chain enhances its cytotoxicity in mammalian cells. Toxins 2011, 3, 453–468, doi:10.3390/toxins3050453.
[189]  Parikh, B.A.; Tortora, A.; Li, X.P.; Tumer, N.E. Ricin inhibits activation of the unfolded protein response by preventing splicing of the HAC1 mRNA. J. Biol. Chem. 2008, 283, 6145–6153, doi:10.1074/jbc.M707981200.
[190]  Horrix, C.; Raviv, Z.; Flescher, E.; Voss, C.; Berger, M.R. Plant ribosome-inactivating proteins type II induce the unfolded protein response in human cancer cells. Cell. Mol. Life Sci. 2010, 68, 1269–1281.
[191]  Li, S.; Spooner, R.A.; Allen, S.C.; Guise, C.P.; Ladds, G.; Schnoder, T.; Schmitt, M.J.; Lord, J.M.; Roberts, L.M. Folding-competent and folding-defective forms of ricin A chain have different fates after retrotranslocation from the endoplasmic reticulum. Mol. Biol. Cell 2010, 21, 2543–2554, doi:10.1091/mbc.E09-08-0743.
[192]  Takizawa, T.; Tatematsu, C.; Nakanishi, Y. Double-stranded RNA-activated protein kinase interacts with apoptosis signal-regulating kinase 1. Implications for apoptosis signaling pathways. Eur. J. Biochem. 2002, 269, 6126–6132, doi:10.1046/j.1432-1033.2002.03325.x.
[193]  Feldman, D.E.; Chauhan, V.; Koong, A.C. The unfolded protein response: A novel component of the hypoxic stress response in tumors. Mol. Canc. Res. 2005, 3, 597–605, doi:10.1158/1541-7786.MCR-05-0221.
[194]  Davies, M.P.; Barraclough, D.L.; Stewart, C.; Joyce, K.A.; Eccles, R.M.; Barraclough, R.; Rudland, P.S.; Sibson, D.R. Expression and splicing of the unfolded protein response gene XBP-1 are significantly associated with clinical outcome of endocrine-treated breast cancer. Int. J. Cancer 2008, 123, 85–88, doi:10.1002/ijc.23479.
[195]  Koong, A.C.; Chauhan, V.; Romero-Ramirez, L. Targeting XBP-1 as a novel anti-cancer strategy. Cancer Biol. Ther. 2006, 5, 756–759.
[196]  Turturro, F. Denileukin diftitox: A biotherapeutic paradigm shift in the treatment of lymphoid-derived disorders. Expert. Rev. Anticancer Ther. 2007, 11–17, doi:10.1586/14737140.7.1.11.
[197]  Fracasso, G.; Bellisola, G.; Castelletti, D.; Tridente, G.; Colombatti, M. Immunotoxins and other conjugates: preparation and general characteristics. Mini Rev. Med. Chem. 2004, 4, 545–562, doi:10.2174/1389557043403909.
[198]  Baluna, R.; Vitetta, E.S. Vascular leak syndrome: a side effect of immunotherapy. Immunopharmacology 1997, 37, 117–132, doi:10.1016/S0162-3109(97)00041-6.
[199]  Weiner, L. M.; O'Dwyer, J.; Kitson, J.; Comson, R.L.; Frankel, A.E.; Bauer, R.J.; Konrad, M.S.; Groves., E.S. Phase I evaluation of an anti-breast carcinoma monoclonal antibody 260F9-recombinant ricin A chain immunoconjugate. Cancer Res. 1989, 49, 4062–4072.
[200]  Conry., R.M.; Khazaeli, M.B.; Saleh, M.N.; Ghetie, V.; Vitetta, E.S.; Liu, T.P. Phase I trial of an anti-CD19 deglycosylated ricin A chain immunotoxin in non-Hodgkins lymphoma—Effect of an intensive schedule of administration. J. Immunother. 1995, 18, 231–238, doi:10.1097/00002371-199511000-00004.
[201]  Soler-Rodríguez, A.M.; Ghetie, M.A.; Oppenheimer-Marks, N.; Uhr, J.W.; Vitetta, E.S. Ricin A-chain and ricin A-chain immunotoxins rapidly damage human endothelial cells: implications for vascular leak syndrome. Exp. Cell Res. 1993, 206, 227–234, doi:10.1006/excr.1993.1142.
[202]  Lindstrom, A.L.; Erlandsen, S.L.; Kersey, J.H.; Pennell, C.A. An in vitro model for toxin-mediated vascular leak syndrome: ricin toxin A chain increases the permeability of human endothelial cell monolayers. Blood 1997, 90, 2323–2334.
[203]  Baluna, R.; Rizo, J.; Gordon, B.E.; Ghetie, V.; Vitetta, E.S. Evidence for a structural motif in toxins and interleukin-2 that may be responsible for binding to endothelial cells and initiating vascular leak syndrome. Proc. Natl. Acad. Sci. USA 1999, 96, 3957–3962.
[204]  Baluna, R.; Coleman, E.; Jones, C.; Ghetie, V.; Vitetta, E.S. The effect of a monoclonal antibody coupled to ricin A chain-derived peptides on endothelial cells in vitro: insights into toxin-mediated vascular damage. Exp. Cell Res. 2000, 258, 417–424, doi:10.1006/excr.2000.4954.
[205]  Baluna, R.; Ghetie, V.; Oppenheimer-Marks, N.; Vitetta, E.S. Fibronectin inhibits the cytotoxic effect of ricin A chain on endothelial cells. Int. J. Immunopharmacol. 1996, 18, 355–361.
[206]  Baluna, R.; Sausville, E.A.; Stone, M.J.; Stetler-Stevenson, M.A.; Uhr, JW.; Vitetta, E.S. Decreases in levels of serum fibronectin predict the severity of vascular leak syndrome in patients treated with ricin A chain-containing immunotoxins. Clin. Cancer Res. 1996, 2, 1705–1712.
[207]  Baluna, R.; Vitetta, E.S. An in vivo model to study immunotoxin-induced vascular leak in human tissue. J. Immunother. 1999, 22, 41–47, doi:10.1097/00002371-199901000-00006.
[208]  Smallshaw, J.E.; Ghetie, V.; Rizo, J.; Fulmer, J.R.; Trahan, L.L.; Ghetie, M.A.; Vitetta, E.S. Genetic engineering of an immunotoxin to eliminate pulmonary vascular leak in mice. Nat. Biotechnol. 2003, 21, 387–391.
[209]  Kreitman, R.J. Taming ricin toxin. Nat. Biotechnol. 2003, 21, 372–374, doi:10.1038/nbt0403-372.
[210]  Liu, X.Y.; Pop, L.M.; Schindler, J.; Vitetta, E.S. Immunotoxins constructed with chimeric, short-lived anti-CD22 monoclonal antibodies induce less vascular leak without loss of cytotoxicity. mAbs 2012, 4, 57–68, doi:10.4161/mabs.4.1.18348.
[211]  Baluna, R.; Vitetta, E.S. Vascular leak syndrome: A side effect of immunothera. Immunopharmacology 1997, 37, 117–132, doi:10.1016/S0162-3109(97)00041-6.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413