全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Host Defense and the Airway Epithelium: Frontline Responses That Protect against Bacterial Invasion and Pneumonia

DOI: 10.4061/2011/249802

Full-Text   Cite this paper   Add to My Lib

Abstract:

Airway epithelial cells are the first line of defense against invading microbes, and they protect themselves through the production of carbohydrate and protein matrices concentrated with antimicrobial products. In addition, they act as sentinels, expressing pattern recognition receptors that become activated upon sensing bacterial products and stimulate downstream recruitment and activation of immune cells which clear invading microbes. Bacterial pathogens that successfully colonize the lungs must resist these mechanisms or inhibit their production, penetrate the epithelial barrier, and be prepared to resist a barrage of inflammation. Despite the enormous task at hand, relatively few virulence factors coordinate the battle with the epithelium while simultaneously providing resistance to inflammatory cells and causing injury to the lung. Here we review mechanisms whereby airway epithelial cells recognize pathogens and activate a program of antibacterial pathways to prevent colonization of the lung, along with a few examples of how bacteria disrupt these responses to cause pneumonia. 1. Introduction Host defense in the mammalian lung relies heavily on innate immune mechanisms that prevent invasion of pathogens. The airway epithelium is the front line defender of the lung which signals recruitment and activation of effector cells to kill invading pathogens and provides a physical barrier loaded with antibacterial compounds. Bacteria that successfully penetrate the epithelium must have the capability to evade these mechanisms, which typically means they avoid recognition and killing by both the effector cells of the innate immune system and the antimicrobial mechanisms in the epithelium. Pneumonia is a consequence of lung colonization, pathogen-induced injury to the epithelium, sustained activation of inflammation, and overactivation of tissue repair mechanisms. Furthermore, vascular leakage and edema are caused by these host responses, allowing the pathogen to gain access to the blood, where it may spread systemically and cause sepsis. Bronchopneumonia is characterized by focal areas of congestion of the parenchyma by bacteria, inflammatory cells, and fibrin while lobar pneumonia is defined by a single area of congestion that takes up a larger portion of a lung lobe. Interstitial pneumonia involves congestion in the surrounding vasculature and is typically the result of overactive recruitment of inflammatory cells. In this paper, we will discuss how airway epithelial cells orchestrate innate immune responses in the lungs in order to limit invasion of

References

[1]  M. C. Rose, T. J. Nickola, and J. A. Voynow, “Airway mucus obstruction: mucin glycoproteins, MUC gene regulation and goblet cell hyperplasia,” American Journal of Respiratory Cell and Molecular Biology, vol. 25, no. 5, pp. 533–537, 2001.
[2]  J. A. Davies and D. R. Garrod, “Molecular aspects of the epithelial phenotype,” BioEssays, vol. 19, no. 8, pp. 699–704, 1997.
[3]  M. R. Knowles and R. C. Boucher, “Mucus clearance as a primary innate defense mechanism for mammalian airways,” Journal of Clinical Investigation, vol. 109, no. 5, pp. 571–577, 2002.
[4]  L. Yang, J. Johansson, R. Ridsdale et al., “Surfactant protein B propeptide contains a saposin-like protein domain with antimicrobial activity at low pH,” Journal of Immunology, vol. 184, no. 2, pp. 975–983, 2010.
[5]  H. Fehrenbach, “Alveolar epithelial type II cell: defender of the alveolus revisited,” Respiratory Research, vol. 2, no. 1, pp. 33–46, 2001.
[6]  R. J. Mason, “Biology of alveolar type II cells,” Respirology, vol. 11, no. 1, pp. S12–S15, 2006.
[7]  G. Guadiz, L. A. Sporn, R. A. Goss, S. O. Lawrence, V. J. Marder, and P. J. Simpson-Haidaris, “Polarized secretion of fibrinogen by lung epithelial cells,” American Journal of Respiratory Cell and Molecular Biology, vol. 17, no. 1, pp. 60–69, 1997.
[8]  A. J. Ratner, K. R. Hippe, J. L. Aguilar, M. H. Bender, A. L. Nelson, and J. N. Weiser, “Epithelial cells are sensitive detectors of bacterial pore-forming toxins,” Journal of Biological Chemistry, vol. 281, no. 18, pp. 12994–12998, 2006.
[9]  A. Punturieri, R. S. Alviani, T. Polak, P. Copper, J. Sonstein, and J. L. Curtis, “Specific engagement of TLR4 or TLR3 does not lead to IFN-β-mediated innate signal amplification and STAT1 phosphorylation in resident murine alveolar macrophages,” Journal of Immunology, vol. 173, no. 2, pp. 1033–1042, 2004.
[10]  L. J. Quinton, M. R. Jones, B. E. Robson, B. T. Simms, J. A. Whitsett, and J. P. Mizgerd, “Alveolar epithelial STAT3, IL-6 family cytokines, and host defense during Escherichia coli pneumonia,” American Journal of Respiratory Cell and Molecular Biology, vol. 38, no. 6, pp. 699–706, 2008.
[11]  S. Rosseau, J. Selhorst, K. Wiechmann et al., “Monocyte migration through the alveolar epithelial barrier: adhesion molecule mechanisms and impact of chemokines,” Journal of Immunology, vol. 164, no. 1, pp. 427–435, 2000.
[12]  T. R. Martin, N. Hagimoto, M. Nakamura, and G. Matute-Bello, “Apoptosis and epithelial injury in the lungs,” Proceedings of the American Thoracic Society, vol. 2, no. 3, pp. 214–220, 2005.
[13]  M. Vareille, E. Kieninger, M. R. Edwards, and N. Regamey, “The airway epithelium: soldier in the fight against respiratory viruses,” Clinical Microbiology Reviews, vol. 24, no. 1, pp. 210–229, 2011.
[14]  T. Balamayooran, G. Balamayooran, and S. Jeyaseelan, “Toll-like receptors and NOD-like receptors in pulmonary antibacterial immunity,” Innate Immunity, vol. 16, no. 3, pp. 201–210, 2010.
[15]  X. Zhao, S. Nozell, Z. Ma, and E. N. Benveniste, “The interferon-stimulated gene factor 3 complex mediates the inhibitory effect of interferon-β on matrix metalloproteinase-9 expression,” FEBS Journal, vol. 274, no. 24, pp. 6456–6468, 2007.
[16]  S. I. Miller, R. K. Ernst, and M. W. Bader, “LPS, TLR4 and infectious disease diversity,” Nature Reviews Microbiology, vol. 3, no. 1, pp. 36–46, 2005.
[17]  Z. Zhou, O. J. Hamming, N. Ank, S. R. Paludan, A. L. Nielsen, and R. Hartmann, “Type III interferon (IFN) induces a type I IFN-like response in a restricted subset of cells through signaling pathways involving both the Jak-STAT pathway and the mitogen-activated protein kinases,” Journal of Virology, vol. 81, no. 14, pp. 7749–7758, 2007.
[18]  N. Ank and S. R. Paludan, “Type III IFNs: new layers of complexity in innate antiviral immunity,” BioFactors, vol. 35, no. 1, pp. 82–87, 2009.
[19]  J. Fan, R. S. Frey, and A. B. Malik, “TLR4 signaling induces TLR2 expression in endothelial cells via neutrophil NADPH oxidase,” Journal of Clinical Investigation, vol. 112, no. 8, pp. 1234–1243, 2003.
[20]  G. Soong, B. Reddy, S. Sokol, R. Adamo, and A. Prince, “TLR2 is mobilized into an apical lipid raft receptor complex to signal infection in airway epithelial cells,” Journal of Clinical Investigation, vol. 113, no. 10, pp. 1482–1489, 2004.
[21]  S. Bunk, S. Sigel, D. Metzdorf et al., “Internalization and coreceptor expression are critical for TLR2-mediated recognition of lipoteichoic acid in human peripheral blood,” Journal of Immunology, vol. 185, no. 6, pp. 3708–3717, 2010.
[22]  M. Choi, Z. Wang, T. Ban et al., “A selective contribution of the RIG-I-like receptor pathway to type I interferon responses activated by cytosolic DNA,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 42, pp. 17870–17875, 2009.
[23]  A. Takaoka, Z. Wang, M. K. Choi et al., “DAI (DLM-1/ZBP1) is a cytosolic DNA sensor and an activator of innate immune response,” Nature, vol. 448, no. 7152, pp. 501–505, 2007.
[24]  K. J. Ishii, T. Kawagoe, S. Koyama et al., “TANK-binding kinase-1 delineates innate and adaptive immune responses to DNA vaccines,” Nature, vol. 451, no. 7179, pp. 725–729, 2008.
[25]  Z. Wang, M. K. Choi, T. Ban et al., “Regulation of innate immune responses by DAI (DLM-1/ZBP1) and other DNA-sensing molecules,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 14, pp. 5477–5482, 2008.
[26]  T. Melkamu, D. Squillace, H. Kita, and S. M. O'Grady, “Regulation of TLR2 expression and function in human airway epithelial cells,” Journal of Membrane Biology, vol. 229, no. 2, pp. 101–113, 2009.
[27]  D. M. Morens, J. K. Taubenberger, and A. S. Fauci, “Predominant role of bacterial pneumonia as a cause of death in pandemic influenza: implications for pandemic influenza preparedness,” Journal of Infectious Diseases, vol. 198, no. 7, pp. 962–970, 2008.
[28]  S. Herold, M. Steinmueller, W. Von Wulffen et al., “Lung epithelial apoptosis in influenza virus pneumonia: the role of macrophage-expressed TNF-related apoptosis-inducing ligand,” Journal of Experimental Medicine, vol. 205, no. 13, pp. 3065–3077, 2008.
[29]  C. L. Small, C. R. Shaler, S. McCormick et al., “Influenza infection leads to increased susceptibility to subsequent bacterial superinfection by impairing NK cell responses in the lung,” Journal of Immunology, vol. 184, no. 4, pp. 2048–2056, 2010.
[30]  E. DiMango, H. J. Zar, R. Bryan, and A. Prince, “Diverse Pseudomonas aeruginosa gene products stimulate respiratory epithelial cells to produce interleukin-8,” Journal of Clinical Investigation, vol. 96, no. 5, pp. 2204–2210, 1995.
[31]  A. Marfaing-Koka, O. Devergne, G. Gorgone et al., “Regulation of the production of the RANTES chemokine by endothelial cells: synergistic induction by IFN-γ plus TNF-α and inhibition by IL-4 and IL-13,” Journal of Immunology, vol. 154, no. 4, pp. 1870–1878, 1995.
[32]  C. Stellato, L. A. Beck, G. A. Gorgone et al., “Expression of the chemokine RANTES by a human bronchial epithelial cell line: modulation by cytokines and glucocorticoids,” Journal of Immunology, vol. 155, no. 1, pp. 410–418, 1995.
[33]  Y. Lin, M. Zhang, and P. F. Barnes, “Chemokine production by a human alveolar epithelial cell line in response to Mycobacterium tuberculosis,” Infection and Immunity, vol. 66, no. 3, pp. 1121–1126, 1998.
[34]  A. Belaaouaj, “Neutrophil elastase-mediated killing of bacteria: lessons from targeted mutagenesis,” Microbes and Infection, vol. 4, no. 12, pp. 1259–1264, 2002.
[35]  S. Griffin, C. C. Taggart, C. M. Greene, S. O'Neill, and N. G. McElvaney, “Neutrophil elastase up-regulates human β-defensin-2 expression in human bronchial epithelial cells,” FEBS Letters, vol. 546, no. 2-3, pp. 233–236, 2003.
[36]  K. K. Adkins, T. D. Levan, R. L. Miesfeld, and J. W. Bloom, “Glucocorticoid regulation of GM-CSF: evidence for transcriptional mechanisms in airway epithelial cells,” American Journal of Physiology, vol. 275, no. 2, pp. L372–L378, 1998.
[37]  G. K. Paterson and C. J. Orihuela, “Pneumococci: immunology of the innate host response,” Respirology, vol. 15, no. 7, pp. 1057–1063, 2010.
[38]  R. Podschun and U. Ullmann, “Klebsiella spp. as nosocomial pathogens: epidemiology, taxonomy, typing methods, and pathogenicity factors,” Clinical Microbiology Reviews, vol. 11, no. 4, pp. 589–603, 1998.
[39]  S. W. Kim, C. H. Choi, D. C. Moon et al., “Serum resistance of Acinetobacter baumannii through the binding of factor H to outer membrane proteins,” FEMS Microbiology Letters, vol. 301, no. 2, pp. 224–231, 2009.
[40]  J. E. Foley and N. C. Nieto, “Tularemia,” Veterinary Microbiology, vol. 140, no. 3-4, pp. 332–338, 2010.
[41]  M. K. McLendon, M. A. Apicella, and L. A. H. Allen, “Francisella tularensis: taxonomy, genetics, and immunopathogenesis of a potential agent of biowarfare,” Annual Review of Microbiology, vol. 60, pp. 167–185, 2006.
[42]  L. D. Thomas and W. Schaffner, “Tularemia pneumonia,” Infectious Disease Clinics of North America, vol. 24, no. 1, pp. 43–55, 2010.
[43]  A. Balagopal, A. S. MacFarlane, N. Mohapatra, S. Soni, J. S. Gunn, and L. S. Schlesinger, “Characterization of the receptor-ligand pathways important for entry and survival of Francisella tularensis in human macrophages,” Infection and Immunity, vol. 74, no. 9, pp. 5114–5125, 2006.
[44]  D. L. Clemens, B. Y. Lee, and M. A. Horwitz, “Francisella tularensis enters macrophages via a novel process involving pseudopod loops,” Infection and Immunity, vol. 73, no. 9, pp. 5892–5902, 2005.
[45]  H. Geier and J. Celli, “Phagocytic receptors dictate phagosomal escape and intracellular proliferation of Francisella tularensis,” Infection and Immunity, vol. 79, no. 6, pp. 2204–2214, 2011.
[46]  L. S. D. Anthony, R. D. Burke, and F. E. Nano, “Growth of Francisella spp. in rodent macrophages,” Infection and Immunity, vol. 59, no. 9, pp. 3291–3296, 1991.
[47]  I. Golovliov, V. Baranov, Z. Krocova, H. Kovarova, and A. Sj?stedt, “An attenuated strain of the facultative intracellular bacterium Francisella tularensis can escape the phagosome of monocytic cells,” Infection and Immunity, vol. 71, no. 10, pp. 5940–5950, 2003.
[48]  C. Checroun, T. D. Wehrly, E. R. Fischer, S. F. Hayes, and J. Celli, “Autophagy-mediated reentry of Francisella tularensis into the endocytic compartment after cytoplasmic replication,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 39, pp. 14578–14583, 2006.
[49]  J. R. Barker, A. Chong, T. D. Wehrly et al., “The Francisella tularensis pathogenicity island encodes a secretion system that is required for phagosome escape and virulence,” Molecular Microbiology, vol. 74, no. 6, pp. 1459–1470, 2009.
[50]  F. E. Nano, N. Zhang, S. C. Cowley et al., “A Francisella tularensis pathogenicity island required for intramacrophage growth,” Journal of Bacteriology, vol. 186, no. 19, pp. 6430–6436, 2004.
[51]  C. M. Lauriano, J. R. Barker, S. S. Yoon et al., “MgIA regulates transcription of virulence factors necessary for Francisella tularensis intraamoebae and intramacrophage survival,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 12, pp. 4246–4249, 2004.
[52]  R. D. Pechous, T. R. McCarthy, and T. C. Zahrt, “Working toward the future: insights into Francisella tularensis pathogenesis and vaccine development,” Microbiology and Molecular Biology Reviews, vol. 73, no. 4, pp. 684–711, 2009.
[53]  K. L. Elkins, T. R. Rhinehart-Jones, S. J. Culkin, D. Yee, and R. K. Winegar, “Minimal requirements for murine resistance to infection with Francisella tularensis LVS,” Infection and Immunity, vol. 64, no. 8, pp. 3288–3293, 1996.
[54]  D. A. Leiby, A. H. Fortier, R. M. Crawford, R. D. Schreiber, and C. A. Nacy, “In vivo modulation of the murine immune response to Francisella tularensis LVS by administration of anticytokine antibodies,” Infection and Immunity, vol. 60, no. 1, pp. 84–89, 1992.
[55]  J. E. Darnell, I. M. Kerr, and G. R. Stark, “Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins,” Science, vol. 264, no. 5164, pp. 1415–1421, 1994.
[56]  T. Polsinelli, M. S. Meltzer, and A. H. Fortier, “Nitric oxide-independent killing of Francisella tularensis by IFN-γ- stimulated murine alveolar macrophages,” Journal of Immunology, vol. 153, no. 3, pp. 1238–1245, 1994.
[57]  H. Lindgren, I. Golovliov, V. Baranov, R. K. Ernst, M. Telepnev, and A. Sj?stedt, “Factors affecting the escape of Francisella tularensis from the phagolysosome,” Journal of Medical Microbiology, vol. 53, no. 10, pp. 953–958, 2004.
[58]  M. Santic, M. Molmeret, and Y. Abu Kwaik, “Modulation of biogenesis of the Francisella tularensis subsp. novicida-containing phagosome in quiescent human macrophages and its maturation into a phagolysosome upon activation by IFN-γ,” Cellular Microbiology, vol. 7, no. 7, pp. 957–967, 2005.
[59]  J. A. Edwards, D. Rockx-Brouwer, V. Nair, and J. Celli, “Restricted cytosolic growth of Francisella tularensis subsp. tularensis by IFN-γ activation of macrophages,” Microbiology, vol. 156, no. 2, pp. 327–339, 2010.
[60]  K. C. Nallaparaju, J. -J. Yu, S. A. Rodriguez et al., “Evasion of IFN-γ signaling by Francisella novicida is dependent upon Francisella outer membrane protein C,” PLoS ONE, vol. 6, no. 3, Article ID e18201, 2011.
[61]  J. S. Gunn and R. K. Ernst, “The structure and function of Francisella lipopolysaccharide,” Annals of the New York Academy of Sciences, vol. 1105, pp. 202–218, 2007.
[62]  A. L. Abplanalp, I. R. Morris, B. K. Parida, J. M. Teale, and M. T. Berton, “TLR-dependent control of Francisella tularensis infection and host inflammatory responses,” PLoS ONE, vol. 4, no. 11, Article ID e7920, 2009.
[63]  J. H. Barker, J. Weiss, M. A. Apicella, and W. M. Nauseef, “Basis for the failure of Francisella tularensis lipopolysaccharide to prime human polymorphonuclear leukocytes,” Infection and Immunity, vol. 74, no. 6, pp. 3277–3284, 2006.
[64]  W. Chen, R. KuoLee, H. Shen, M. Bùsa, and J. W. Conlan, “Toll-like receptor 4 (TLR4) does not confer a resistance advantage on mice against low-dose aerosol infection with virulent type A Francisella tularensis,” Microbial Pathogenesis, vol. 37, no. 4, pp. 185–191, 2004.
[65]  A. M. Hajjar, M. D. Harvey, S. A. Shaffer et al., “Lack of in vitro and in vivo recognition of Francisella tularensis subspecies lipopolysaccharide by Toll-like receptors,” Infection and Immunity, vol. 74, no. 12, pp. 6730–6738, 2006.
[66]  E. Vinogradov, M. B. Perry, and J. W. Conlan, “Structural analysis of Francisella tularensis lipopolysaccharide,” European Journal of Biochemistry, vol. 269, no. 24, pp. 6112–6118, 2002.
[67]  A. I. Due?as, M. Aceves, A. Ordu?a, R. Díaz, M. Sánchez Crespo, and C. García-Rodríguez, “Francisella tularensis LPS induces the production of cytokines in human monocytes and signals via Toll-like receptor 4 with much lower potency than E. coli LPS,” International Immunology, vol. 18, no. 5, pp. 785–795, 2006.
[68]  N. J. Phillips, B. Schilling, M. K. McLendon, M. A. Apicella, and B. W. Gibson, “Novel modification of lipid A of Francisella tularensis,” Infection and Immunity, vol. 72, no. 9, pp. 5340–5348, 2004.
[69]  X. Wang, S. C. McGrath, R. J. Cotter, and C. R. H. Raetz, “Expression cloning and periplasmic orientation of the Francisella novicida lipid A -phosphatase LpxF,” Journal of Biological Chemistry, vol. 281, no. 14, pp. 9321–9330, 2006.
[70]  X. Wang, A. A. Ribeiro, Z. Guan, S. N. Abraham, and C. R. H. Raetz, “Attenuated virulence of a Francisella mutant lacking the lipid a -phosphatase,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 10, pp. 4136–4141, 2007.
[71]  A. Lembo, M. Pelletier, R. Iyer et al., “Administration of a synthetic TLR4 agonist protects mice from pneumonic tularemia,” Journal of Immunology, vol. 180, no. 11, pp. 7574–7581, 2008.
[72]  D. Kanistanon, A. M. Hajjar, M. R. Pelletier et al., “A Francisella mutant in lipid A carbohydrate modification elicits protective immunity,” PLoS Pathogens, vol. 4, no. 2, article e24, 2008.
[73]  X. H. Lai, R. L. Shirley, L. Crosa et al., “Mutations of Francisella novicida that alter the mechanism of its phagocytosis by murine macrophages,” PLoS ONE, vol. 5, no. 7, Article ID e11857, 2010.
[74]  C. D. Clay, S. Soni, J. S. Gunn, and L. S. Schlesinger, “Evasion of complement-mediated lysis and complement C3 deposition are regulated by Francisella tularensis lipopolysaccharide O antigen,” Journal of Immunology, vol. 181, no. 8, pp. 5568–5578, 2008.
[75]  P. Gros, F. J. Milder, and B. J. C. Janssen, “Complement driven by conformational changes,” Nature Reviews Immunology, vol. 8, no. 1, pp. 48–58, 2008.
[76]  A. B. Nasr and G. R. Klimpe, “Subversion of complement activation at the bacterial surface promotes serum resistance and opsonophagocytosis of Francisella tularensis,” Journal of Leukocyte Biology, vol. 84, no. 1, pp. 77–85, 2008.
[77]  M. A. Apicella, D. M. B. Post, A. C. Fowler et al., “Identification, characterization and immunogenicity of an O-antigen capsular polysaccharide of Francisella tularensis,” PLoS ONE, vol. 5, no. 7, Article ID e11060, 2010.
[78]  S. R. Lindemann, K. Peng, M. E. Long et al., “Francisella tularensis Schu S4 O-antigen and capsule biosynthesis gene mutants induce early cell death in human macrophages,” Infection and Immunity, vol. 79, no. 2, pp. 581–594, 2011.
[79]  S. Sebastian, S. T. Dillon, J. G. Lynch et al., “A defined O-antigen polysaccharide mutant of Francisella tularensis live vaccine strain has attenuated virulence while retaining its protective capacity,” Infection and Immunity, vol. 75, no. 5, pp. 2591–2602, 2007.
[80]  J. Li, C. Ryder, M. Mandal et al., “Attenuation and protective efficacy of an O-antigen-deficient mutant of Francisella tularensis LVS,” Microbiology, vol. 153, no. 9, pp. 3141–3153, 2007.
[81]  S. Han, B. M. Bishop, and M. L. van Hoek, “Antimicrobial activity of human beta-defensins and induction by Francisella,” Biochemical and Biophysical Research Communications, vol. 371, no. 4, pp. 670–674, 2008.
[82]  M. Pazgier, D. M. Hoover, D. Yang, W. Lu, and J. Lubkowski, “Human β-defensins,” Cellular and Molecular Life Sciences, vol. 63, no. 11, pp. 1294–1313, 2006.
[83]  K. De Smet and R. Contreras, “Human antimicrobial peptides: defensins, cathelicidins and histatins,” Biotechnology Letters, vol. 27, no. 18, pp. 1337–1347, 2005.
[84]  P. K. Singh, H. P. Jia, K. Wiles et al., “Production of β-defensins by human airway epithelia,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 25, pp. 14961–14966, 1998.
[85]  J. Harder, J. Bartels, E. Christophers, and J. M. Schr?der, “Isolation and characterization of human β-defensin-3, a novel human inducible peptide antibiotic,” Journal of Biological Chemistry, vol. 276, no. 8, pp. 5707–5713, 2001.
[86]  T. Henry and D. M. Monack, “Activation of the inflammasome upon Francisella tularensis infection: interplay of innate immune pathways and virulence factors,” Cellular Microbiology, vol. 9, no. 11, pp. 2543–2551, 2007.
[87]  M. Malik, C. S. Bakshi, B. Sahay, A. Shah, S. A. Lotz, and T. J. Sellati, “Toll-like receptor 2 is required for control of pulmonary infection with Francisella tularensis,” Infection and Immunity, vol. 74, no. 6, pp. 3657–3662, 2006.
[88]  T. Henry, A. Brotcke, D. S. Weiss, L. J. Thompson, and D. M. Monack, “Type I interferon signaling is required for activation of the inflammasome during Francisella infection,” Journal of Experimental Medicine, vol. 204, no. 5, pp. 987–994, 2007.
[89]  D. S. Weiss, T. Henry, and D. M. Monack, “Francisella tularensis: activation of the inflammasome,” Annals of the New York Academy of Sciences, vol. 1105, pp. 219–237, 2007.
[90]  H. Li, S. Nookala, X. R. Bina, J. E. Bina, and F. Re, “Innate immune response to Francisella tularensis is mediated by TLR2 and caspase-1 activation,” Journal of Leukocyte Biology, vol. 80, no. 4, pp. 766–773, 2006.
[91]  L. E. Cole, A. Santiago, E. Barry et al., “Macrophage proinflammatory response to Francisella tularensis live vaccine strain requires coordination of multiple signaling pathways,” Journal of Immunology, vol. 180, no. 10, pp. 6885–6891, 2008.
[92]  L. E. Cole, K. A. Shirey, E. Barry et al., “Toll-like receptor 2-mediated signaling requirements for Francisella tularensis live vaccine strain infection of murine macrophages,” Infection and Immunity, vol. 75, no. 8, pp. 4127–4137, 2007.
[93]  S. Thakran, H. Li, C. L. Lavine et al., “Identification of Francisella tularensis lipoproteins that stimulate the toll-like receptor (TLR) 2/TLR1 heterodimer,” Journal of Biological Chemistry, vol. 283, no. 7, pp. 3751–3760, 2008.
[94]  E. A. Medina, I. R. Morris, and M. T. Berton, “Phosphatidylinositol 3-kinase activation attenuates the TLR2-mediated macrophage proinflammatory cytokine response to Francisella tularensis live vaccine strain,” Journal of Immunology, vol. 185, no. 12, pp. 7562–7572, 2010.
[95]  J. D. Hall, R. R. Craven, J. R. Fuller, R. J. Pickles, and T. H. Kawula, “Francisella tularensis replicates within alveolar type II epithelial cells in vitro and in vivo following inhalation,” Infection and Immunity, vol. 75, no. 2, pp. 1034–1039, 2007.
[96]  S. Chakraborty, M. Monfett, T. M. Maier, J. L. Benach, D. W. Frank, and D. G. Thanassi, “Type IV pili in Francisella tularensis: roles of pilF and pilT in fiber assembly, host cell adherence, and virulence,” Infection and Immunity, vol. 76, no. 7, pp. 2852–2861, 2008.
[97]  A. Melillo, D. D. Sledjeski, S. Lipski, R. M. Wooten, V. Basrur, and E. R. Lafontaine, “Identification of a Francisella tularensis LVS outer membrane protein that confers adherence to A549 human lung cells,” FEMS Microbiology Letters, vol. 263, no. 1, pp. 102–108, 2006.
[98]  R. R. Craven, J. D. Hall, J. R. Fuller, S. Taft-Benz, and T. H. Kawula, “Francisella tularensis invasion of lung epithelial cells,” Infection and Immunity, vol. 76, no. 7, pp. 2833–2842, 2008.
[99]  M. Gentry, J. Taormina, R. B. Pyles et al., “Role of primary human alveolar epithelial cells in host defense against Francisella tularensis infection,” Infection and Immunity, vol. 75, no. 8, pp. 3969–3978, 2007.
[100]  M. Malik, C. S. Bakshi, K. McCabe et al., “Matrix metalloproteinase 9 activity enhances host susceptibility to pulmonary infection with type A and B strains of Francisella tularensis,” Journal of Immunology, vol. 178, no. 2, pp. 1013–1020, 2007.
[101]  J. G. Moreland, J. S. Hook, G. Bailey, T. Ulland, and W. M. Nauseef, “Francisella tularensis directly interacts with the endothelium and recruits neutrophils with a blunted inflammatory phenotype,” American Journal of Physiology, vol. 296, no. 6, pp. L1076–L1084, 2009.
[102]  R. KuoLee, G. Harris, J. W. Conlan, and W. Chen, “Role of neutrophils and NADPH phagocyte oxidase in host defense against respiratory infection with virulent Francisella tularensis in mice,” Microbes and Infection, vol. 13, no. 5, pp. 447–456, 2011.
[103]  R. L. McCaffrey and L. A. H. Allen, “Pivotal advance: Francisella tularensis LVS evades killing by human neutrophils via inhibition of the respiratory burst and phagosome escape,” Journal of Leukocyte Biology, vol. 80, no. 6, pp. 1224–1230, 2006.
[104]  J. H. Barker, R. L. McCaffrey, N. K. Baman, L. A. H. Allen, J. P. Weiss, and W. M. Nauseef, “The role of complement opsonization in interactions between F. tularensis subsp. novicida and human neutrophils,” Microbes and Infection, vol. 11, no. 8-9, pp. 762–769, 2009.
[105]  T. J. Reilly, G. S. Baron, F. E. Nano, and M. S. Kuhlenschmidt, “Characterization and sequencing of a respiratory burst-inhibiting acid phosphatase from Francisella tularensis,” Journal of Biological Chemistry, vol. 271, no. 18, pp. 10973–10983, 1996.
[106]  N. P. Mohapatra, S. Soni, M. V. S. Rajaram et al., “Francisella acid phosphatases inactivate the NADPH oxidase in human phagocytes,” Journal of Immunology, vol. 184, no. 9, pp. 5141–5150, 2010.
[107]  G. S. Schulert, R. L. McCaffrey, B. W. Buchan et al., “Francisella tularensis genes required for inhibition of the neutrophil respiratory burst and intramacrophage growth identified by random transposon mutagenesis of strain LVS,” Infection and Immunity, vol. 77, no. 4, pp. 1324–1336, 2009.
[108]  B. A. Diep, H. A. Carleton, R. F. Chang, G. F. Sensabaugh, and F. Perdreau-Remington, “Roles of 34 virulence genes in the evolution of hospital- and community-associated strains of methicillin-resistant Staphylococcus aureus,” Journal of Infectious Diseases, vol. 193, no. 11, pp. 1495–1503, 2006.
[109]  R. M. Klevens, M. A. Morrison, J. Nadle et al., “Invasive methicillin-resistant Staphylococcus aureus infections in the United States,” Journal of the American Medical Association, vol. 298, no. 15, pp. 1763–1771, 2007.
[110]  O. Takeuchi, K. Hoshino, and S. Akira, “Cutting edge: TLR2-deficient and MyD88-deficient mice are highly susceptible to Staphylococcus aureus infection,” Journal of Immunology, vol. 165, no. 10, pp. 5392–5396, 2000.
[111]  J. E. Wang, P. F. J?rgensen, M. Alml?f et al., “Peptidoglycan and lipoteichoic acid from Staphylococcus aureus induce tumor necrosis factor alpha, interleukin 6 (IL-6), and IL-10 production in both T cells and monocytes in a human whole blood model,” Infection and Immunity, vol. 68, no. 7, pp. 3965–3970, 2000.
[112]  I. S. Cheon, S. S. Woo, S. S. Kang et al., “Peptidoglycan-mediated IL-8 expression in human alveolar type II epithelial cells requires lipid raft formation and MAPK activation,” Molecular Immunology, vol. 45, no. 6, pp. 1665–1673, 2008.
[113]  P. Hruz, A. S. Zinkernagel, G. Jenikova et al., “NOD2 contributes to cutaneous defense against Staphylococcus aureus through α-toxin-dependent innate immune activation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 31, pp. 12873–12878, 2009.
[114]  A. Shiratsuchi, K. Shimizu, I. Watanabe et al., “Auxiliary role for D-alanylated wall teichoic acid in Toll-like receptor 2-mediated survival of Staphylococcus aureus in macrophages,” Immunology, vol. 129, no. 2, pp. 268–277, 2010.
[115]  S. D. Kobayashi, K. R. Braughton, A. M. Palazzolo-Ballance et al., “Rapid neutrophil destruction following phagocytosis of Staphylococcus aureus,” Journal of Innate Immunity, vol. 2, no. 6, pp. 560–575, 2010.
[116]  Z. Sever-Chroneos, A. Krupa, J. Davis et al., “Surfactant protein A (SP-A)-mediated clearance of Staphylococcus aureus involves binding of SP-A to the staphylococcal adhesin Eap and the macrophage receptors SP-A receptor 210 and scavenger receptor class A,” Journal of Biological Chemistry, vol. 286, no. 6, pp. 4854–4870, 2011.
[117]  B. Sinha, P. P. Fran?ois, O. Nü?e et al., “Fibronectin-binding protein acts as Staphylococcus aureus invasin via fibronectin bridging to integrin α5β1,” Cellular Microbiology, vol. 1, no. 2, pp. 101–117, 1999.
[118]  S. Clement, et al., “Evidence of an intracellular reservoir in the nasal mucosa of patients with recurrent Staphylococcus aureus rinosinusitis,” Journal of Infectious Diseases, vol. 192, pp. 1023–1028, 2005.
[119]  C. Garzoni, P. Francois, A. Huyghe et al., “A global view of Staphylococcus aureus whole genome expression upon internalization in human epithelial cells,” BMC Genomics, vol. 8, article 171, 2007.
[120]  K. W. Bayles, C. A. Wesson, L. E. Liou, L. K. Fox, G. A. Bohach, and W. R. Trumble, “Intracellular Staphylococcus aureus escapes the endosome and induces apoptosis in epithelial cells,” Infection and Immunity, vol. 66, no. 1, pp. 336–342, 1998.
[121]  C. A. Wesson, L. E. Liou, K. M. Todd, G. A. Bohach, W. R. Trumble, and K. W. Bayles, “Staphylococcus aureus Agr and Sar global regulators influence internalization and induction of apoptosis,” Infection and Immunity, vol. 66, no. 11, pp. 5238–5243, 1998.
[122]  K. Dziewanowska, J. M. Patti, C. F. Deobald, K. W. Bayles, W. R. Trumble, and G. A. Bohach, “Fibronectin binding protein and host cell tyrosine kinase are required for internalization of Staphylococcus aureus by epithelial cells,” Infection and Immunity, vol. 67, no. 9, pp. 4673–4678, 1999.
[123]  F. Agerer, A. Michel, K. Ohlsen, and C. R. Hauck, “Integrin-mediated invasion of Staphylococcus aureus into human cells requires Src family protein-tyrosine kinases,” Journal of Biological Chemistry, vol. 278, no. 43, pp. 42524–42531, 2003.
[124]  T. Fowler, S. Johansson, K. K. Wary, and M. H??k, “Src kinase has a central role in vitro cellular internalization of Staphylococcus aureus,” Cellular Microbiology, vol. 5, no. 6, pp. 417–426, 2003.
[125]  F. J. Martin, M. I. Gomez, D. M. Wetzel et al., “Staphylococcus aureus activates type I IFN signaling in mice and humans through the Xr repeated sequences of protein A,” Journal of Clinical Investigation, vol. 119, no. 7, pp. 1931–1939, 2009.
[126]  J. B. Wardenburg, R. J. Patel, and O. Schneewind, “Surface proteins and exotoxins are required for the pathogenesis of Staphylococcus aureus pneumonia,” Infection and Immunity, vol. 75, no. 2, pp. 1040–1044, 2007.
[127]  M. I. Gómez, A. Lee, B. Reddy et al., “Staphylococcus aureus protein A induces airway epithelial inflammatory responses by activating TNFR1,” Nature Medicine, vol. 10, no. 8, pp. 842–848, 2004.
[128]  M. I. Gómez, M. O'Seaghdha, M. Magargee, T. J. Foster, and A. S. Prince, “Staphylococcus aureus protein A activates TNFR1 signaling through conserved IgG binding domains,” Journal of Biological Chemistry, vol. 281, no. 29, pp. 20190–20196, 2006.
[129]  M. Li, B. A. Diep, A. E. Villaruz et al., “Evolution of virulence in epidemic community-associated methicillin-resistant Staphylococcus aureus,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 14, pp. 5883–5888, 2009.
[130]  A. Fromageau, F. B. Gilbert, G. Prévost, and P. Rainard, “Binding of the Staphylococcus aureus leucotoxin LukM to its leucocyte targets,” Microbial Pathogenesis, vol. 49, no. 6, pp. 354–362, 2010.
[131]  A. L. DuMont, T. K. Nygaard, R. L. Watkins et al., “Characterization of a new cytotoxin that contributes to Staphylococcus aureus pathogenesis,” Molecular Microbiology, vol. 79, no. 3, pp. 814–825, 2011.
[132]  F. Rose, G. Dahlem, B. Guthmann et al., “Mediator generation and signaling events in alveolar epithelial cells attacked by S. aureus α-toxin,” American Journal of Physiology, vol. 282, no. 2, pp. L207–L214, 2002.
[133]  S. Eichstaedt, K. G?bler, S. Below et al., “Effects of Staphylococcus aureus-hemolysin A on calcium signalling in immortalized human airway epithelial cells,” Cell Calcium, vol. 45, no. 2, pp. 165–176, 2009.
[134]  G. A. Wilke and J. B. Wardenburg, “Role of a disintegrin and metalloprotease 10 in Staphylococcus aureusα-hemolysin—mediated cellular injury,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 30, pp. 13473–13478, 2010.
[135]  A. Hayashida, A. H. Bartlett, T. J. Foster, and P. W. Park, “Staphylococcus aureus beta-toxin induces lung injury through syndecan-1,” American Journal of Pathology, vol. 174, no. 2, pp. 509–518, 2009.
[136]  M. Labandeira-Rey, F. Couzon, S. Boisset et al., “Staphylococcus aureus Panton-Valentine leukocidin causes necrotizing pneumonia,” Science, vol. 315, no. 5815, pp. 1130–1133, 2007.
[137]  J. B. Wardenburg, A. M. Palazzolo-Ballance, M. Otto, O. Schneewind, and F. R. DeLeo, “Panton-Valentine leukocidin is not a virulence determinant in murine models of community-associated methicillin-resistant Staphylococcus aureus disease,” Journal of Infectious Diseases, vol. 198, no. 8, pp. 1166–1170, 2008.
[138]  B. A. Diep, L. Chan, P. Tattevin et al., “Polymorphonuclear leukocytes mediate Staphylococcus aureus Panton-Valentine leukocidin-induced lung inflammation and injury,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 12, pp. 5587–5592, 2010.
[139]  B. L?ffler, M. Hussain, M. Grundmeier et al., “Staphylococcus aureus Panton-Valentine leukocidin is a very potent cytotoxic factor for human neutrophils,” PLoS Pathogens, vol. 6, no. 1, Article ID e1000715, 2010.
[140]  A. Zivkovic, O. Sharif, K. Stich et al., “TLR 2 and CD14 mediate innate immunity and lung inflammation to staphylococcal Panton-Valentine leukocidin in vivo,” Journal of Immunology, vol. 186, no. 3, pp. 1608–1617, 2011.
[141]  K. L. Gage and M. Y. Kosoy, “Natural history of plague: perspectives from more than a century of research,” Annual Review of Entomology, vol. 50, pp. 505–528, 2005.
[142]  W. W. Lathem, S. D. Crosby, V. L. Miller, and W. E. Goldman, “Progression of primary pneumonic plague: a mouse model of infection, pathology, and bacterial transcriptional activity,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 49, pp. 17786–17791, 2005.
[143]  R. Pollitzer, Plague, World Health Organization, Geneva, Switzerland, 1954.
[144]  R. Rebeil, R. K. Ernst, B. B. Gowen, S. I. Miller, and B. J. Hinnebusch, “Variation in lipid A structure in the pathogenic yersiniae,” Molecular Microbiology, vol. 52, no. 5, pp. 1363–1373, 2004.
[145]  R. Rebeil, R. K. Ernst, C. O. Jarrett, K. N. Adams, S. I. Miller, and B. J. Hinnebusch, “Characterization of late acyltransferase genes of Yersinia pestis and their role in temperature-dependent lipid A variation,” Journal of Bacteriology, vol. 188, no. 4, pp. 1381–1388, 2006.
[146]  S. W. Montminy, N. Khan, S. McGrath et al., “Virulence factors of Yersinia pestis are overcome by a strong lipopolysaccharide response,” Nature Immunology, vol. 7, no. 10, pp. 1066–1073, 2006.
[147]  K. Kawahara, H. Tsukano, H. Watanabe, B. Lindner, and M. Matsuura, “Modification of the structure and activity of lipid A in Yersinia pestis lipopolysaccharide by growth temperature,” Infection and Immunity, vol. 70, no. 8, pp. 4092–4098, 2002.
[148]  M. Matsuura, H. Takahashi, H. Watanabe, S. Saito, and K. Kawahara, “Immunomodulatory effects of Yersinia pestis lipopolysaccharides on human macrophages,” Clinical and Vaccine Immunology, vol. 17, no. 1, pp. 49–55, 2010.
[149]  S. W. Montminy, N. Khan, S. McGrath et al., “Virulence factors of Yersinia pestis are overcome by a strong lipopolysaccharide response,” Nature Immunology, vol. 7, no. 10, pp. 1066–1073, 2006.
[150]  M. V. Telepnev, G. R. Klimpel, J. Haithcoat, Y. A. Knirel, A. P. Anisimov, and V. L. Motin, “Tetraacylated lipopolysaccharide of Yersinia pestis can inhibit multiple toll-like receptor-mediated signaling pathways in human dendritic cells,” Journal of Infectious Diseases, vol. 200, no. 11, pp. 1694–1702, 2009.
[151]  I. Adkins, M. K?berle, S. Gr?bner, E. Bohn, I. B. Autenrieth, and S. Borgmann, “Yersinia outer proteins E, H, P, and T differentially target the cytoskeleton and inhibit phagocytic capacity of dendritic cells,” International Journal of Medical Microbiology, vol. 297, no. 4, pp. 235–244, 2007.
[152]  T. Bergsbaken, S. L. Fink, and B. T. Cookson, “Pyroptosis: host cell death and inflammation,” Nature Reviews Microbiology, vol. 7, no. 2, pp. 99–109, 2009.
[153]  J. L. Spinner, J. A. Cundiff, and S. D. Kobayashi, “Yersinia pestis type III secretion system-dependent inhibition of human polymorphonuclear leukocyte function,” Infection and Immunity, vol. 76, no. 8, pp. 3754–3760, 2008.
[154]  C. M. Bosio, A. W. Goodyear, and S. W. Dow, “Early interaction of Yersinia pestis with APCs in the lung,” Journal of Immunology, vol. 175, no. 10, pp. 6750–6756, 2005.
[155]  A. M. Cantwell, S. S. Bubeck, and P. H. Dube, “YopH inhibits early pro-inflammatory cytokine responses during plague pneumonia,” BMC Immunology, vol. 11, article 29, 2010.
[156]  L. Zhou, A. Tan, and M. B. Hershenson, “Yersinia YopJ inhibits pro-inflammatory molecule expression in human bronchial epithelial cells,” Respiratory Physiology and Neurobiology, vol. 140, no. 1, pp. 89–97, 2004.
[157]  N. Lema?tre, F. Sebbane, D. Long, and B. J. Hinnebusch, “Yersinia pestis YopJ suppresses tumor necrosis factor alpha induction and contributes to apoptosis of immune cells in the lymph node but is not required for virulence in a rat model of bubonic plague,” Infection and Immunity, vol. 74, no. 9, pp. 5126–5131, 2006.
[158]  T. M. Tsang, S. Felek, and E. S. Krukonis, “Ail binding to fibronectin facilitates Yersinia pestis binding to host cells and yop delivery,” Infection and Immunity, vol. 78, no. 8, pp. 3358–3368, 2010.
[159]  K. L?hteenm?ki, R. Virkola, A. Sarén, L. Em?dy, and T. K. Korhonen, “Expression of plasminogen activator Pla of Yersinia pestis enhances bacterial attachment to the mammalian extracellular matrix,” Infection and Immunity, vol. 66, no. 12, pp. 5755–5762, 1998.
[160]  O. A. Sodeinde, Y. V. B. K. Subrahmanyam, K. Stark, T. Quan, Y. Bao, and J. D. Goguen, “A surface protease and the invasive character of plague,” Science, vol. 258, no. 5084, pp. 1004–1007, 1992.
[161]  Y. Zhang, J. Murtha, M. A. Roberts, R. M. Siegel, and J. B. Bliska, “Type III secretion decreases bacterial and host survival following phagocytosis of Yersinia pseudotuberculosis by macrophages,” Infection and Immunity, vol. 76, no. 9, pp. 4299–4310, 2008.
[162]  E. M. Galván, H. Chen, and D. M. Schifferli, “The Psa fimbriae of Yersinia pestis interact with phosphatidylcholine on alveolar epithelial cells and pulmonary surfactant,” Infection and Immunity, vol. 75, no. 3, pp. 1272–1279, 2007.
[163]  D. Payne, D. Tatham, E. D. Williamson, and R. W. Titball, “The pH 6 antigen of Yersinia pestis binds to β1-linked galactosyl residues in glycosphingolipids,” Infection and Immunity, vol. 66, no. 9, pp. 4545–4548, 1998.
[164]  F. Liu, H. Chen, E. M. Galván, M. A. Lasaro, and D. M. Schifferli, “Effects of Psa and F1 on the adhesive and invasive interactions of Yersinia pestis with human respiratory tract epithelial cells,” Infection and Immunity, vol. 74, no. 10, pp. 5636–5644, 2006.
[165]  E. H. Weening, J. S. Cathelyn, G. Kaufman et al., “The dependence of the Yersinia pestis capsule on pathogenesis is influenced by the mouse background,” Infection and Immunity, vol. 79, no. 2, pp. 644–652, 2011.
[166]  S. Felek, T. M. Tsang, and E. S. Krukonis, “Three Yersinia pestis adhesins facilitate Yop delivery to eukaryotic cells and contribute to plague virulence,” Infection and Immunity, vol. 78, no. 10, pp. 4134–4150, 2010.
[167]  A. M. Kolodziejek, D. R. Schnider, H. N. Rohde et al., “Outer membrane protein X (Ail) contributes to Yersinia pestis virulence in pneumonic plague and its activity is dependent on the lipopolysaccharide core length,” Infection and Immunity, vol. 78, no. 12, pp. 5233–5243, 2010.
[168]  W. W. Lathem, P. A. Price, V. L. Miller, and W. E. Goldman, “A plasminogen-activating protease specifically controls the development of primary pneumonic plague,” Science, vol. 315, no. 5811, pp. 509–513, 2007.
[169]  S. S. Bartra, K. L. Styer, D. M. O'Bryant et al., “Resistance of Yersinia pestis to complement-dependent killing is mediated by the ail outer membrane protein,” Infection and Immunity, vol. 76, no. 2, pp. 612–622, 2008.
[170]  A. M. Kolodziejek, D. R. Schnider, H. N. Rohde et al., “Outer membrane protein X (Ail) contributes to Yersinia pestis virulence in pneumonic plague and its activity is dependent on the lipopolysaccharide core length,” Infection and Immunity, vol. 78, no. 12, pp. 5233–5243, 2010.
[171]  E. M. Galván, M. A. S. Lasaro, and D. M. Schifferli, “Capsular antigen fraction 1 and Pla modulate the susceptibility of Yersinia pestis to pulmonary antimicrobial peptides such as cathelicidin,” Infection and Immunity, vol. 76, no. 4, pp. 1456–1464, 2008.
[172]  R. R. Isberg and J. M. Leong, “Multiple β1 chain integrins are receptors for invasin, a protein that promotes bacterial penetration into mammalian cells,” Cell, vol. 60, no. 5, pp. 861–871, 1990.
[173]  M. Simonet, B. Riot, N. Fortineau, and P. Berche, “Invasin production by Yersinia pestis is abolished by insertion of an IS200-like element within the inv gene,” Infection and Immunity, vol. 64, no. 1, pp. 375–379, 1996.
[174]  C. Pujol and J. B. Bliska, “The ability to replicate in macrophages is conserved between Yersinia pestis and Yersinia pseudotuberculosis,” Infection and Immunity, vol. 71, no. 10, pp. 5892–5899, 2003.
[175]  C. Pujol, J. P. Grabenstein, R. D. Perry, and J. B. Bliska, “Replication of Yersinia pestis in interferon γ-activated macrophages requires ripA, a gene encoded in the pigmentation locus,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 36, pp. 12909–12914, 2005.
[176]  J. L. O'Loughlin, J. L. Spinner, S. A. Minnich, and S. D. Kobayashi, “Yersinia pestis two-component gene regulatory systems promote survival in human neutrophils,” Infection and Immunity, vol. 78, no. 2, pp. 733–782, 2010.
[177]  C. Pujol, K. A. Klein, G. A. Romanov et al., “Yersinia pestis can reside in autophagosomes and avoid xenophagy in murine macrophages by preventing vacuole acidification,” Infection and Immunity, vol. 77, no. 6, pp. 2251–2261, 2009.
[178]  J. D. Goguen, J. Yother, and S. C. Straley, “Genetic analysis of the low calcium response in Yersinia pestis Mu d1(Ap lac) insertion mutants,” Journal of Bacteriology, vol. 160, no. 3, pp. 842–848, 1984.
[179]  J. P. Grabenstein, M. Marceau, C. Pujol, M. Simonet, and J. B. Bliska, “The response regulator PhoP of Yersinia pseudotuberculosis is important for replication in macrophages and for virulence,” Infection and Immunity, vol. 72, no. 9, pp. 4973–4984, 2004.
[180]  J. P. Grabenstein, H. S. Fukuto, L. E. Palmer, and J. B. Bliska, “Characterization of phagosome trafficking and identification of PhoP-regulated genes important for survival of Yersinia pestis in macrophages,” Infection and Immunity, vol. 74, no. 7, pp. 3727–3741, 2006.
[181]  J. L. O'Loughlin, J. L. Spinner, S. A. Minnich, and S. D. Kobayashi, “Yersinia pestis two-component gene regulatory systems promote survival in human neutrophils,” Infection and Immunity, vol. 78, no. 2, pp. 733–782, 2010.
[182]  N. A. Eisele and D. M. Anderson, “Dual-function antibodies to Yersinia pestis LcrV required for pulmonary clearance of plague,” Clinical and Vaccine Immunology, vol. 16, no. 12, pp. 1720–1727, 2009.
[183]  B. L. Noel, S. Lilo, D. Capurso, J. Hill, and J. B. Bliska, “Yersinia pestis can bypass protective antibodies to LcrV and activation with gamma interferon to survive and induce apoptosis in murine macrophages,” Clinical and Vaccine Immunology, vol. 16, no. 10, pp. 1457–1466, 2009.
[184]  N. A. Eisele, H. Lee-Lewis, C. Besch-Williford, C. R. Brown, and D. M. Anderson, “Chemokine receptor CXCR2 mediates bacterial clearance rather than neutrophil recruitment in a murine model of pneumonic plague,” American Journal of Pathology, vol. 178, no. 3, pp. 1190–1200, 2011.
[185]  J. L. Spinner, K. S. Seo, J. L. O'Loughlin et al., “Neutrophils are resistant to Yersinia YopJ/P-induced apoptosis and are protected from ROS-mediated cell death by the type III secretion system,” PLoS ONE, vol. 5, no. 2, Article ID e9279, 2010.
[186]  F. R. DeLeo, “Modulation of phagocyte apoptosis by bacterial pathogens,” Apoptosis, vol. 9, no. 4, pp. 399–413, 2004.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133