全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Antibodies  2013 

Dissecting the Entry Route of Saporin-based a-CD7 Immunotoxins in Human T-Cell Acute Lymphoblastic Leukaemia Cells

DOI: 10.3390/antib2010050

Keywords: endocytosis, immunotoxin, ricin, Brefeldin A, leukaemia cells

Full-Text   Cite this paper   Add to My Lib

Abstract:

Elucidating the intracellular fate(s) of targeted toxins is of fundamental importance for their optimal use as anticancer drugs, since the biochemical targets of their enzymatic activity reside in the cell cytoplasm, as in the case of the plant ribosome inactivating proteins (RIP) saporin, ricin and of bacterial toxins. In this paper, we compared the cell surface binding and cytotoxic properties of the model RIP ricin to an immunotoxin constructed with a monoclonal antibody directed against the human T-cell marker CD7 covalently linked to saporin (CD7-SAP). Our results indicate that, despite the fact that internalization takes place via an apparently common entry route leading to the Golgi complex, surprisingly, the addition of an endoplasmic reticulum retrieval C-terminal signal (KDEL) to CD7-SAP does not potentiate its cytotoxicity. In addition, while ricin toxicity is clearly reduced by Brefeldin A under conditions where this fungal metabolite causes Golgi stack disruption, we paradoxically observed a potentiating effect by Brefeldin A on CD7-SAP cytotoxicity suggesting that this inhibitor interferes with retrograde route(s) other than the well established Trans-Golgi Network-ER retrograde route.

References

[1]  Fabbrini, M.S.; Flavell, D.J.; Ippoliti, R. Plant protein toxins: Structure, function and biotechnological applications. In Bacterial Plant and Animal Toxins; Ascenzi, P., Polticelli, F., Visca, P., Eds.; Research Signpost: Trivandrum, India, 2003; pp. 69–99.
[2]  Flavell, D.J. Saporin immunotoxins. Curr. Top. Microbiol. Immunol. 1998, 234, 57–61, doi:10.1007/978-3-642-72153-3_4.
[3]  Kreitman, R.J.; Pastan, I. Immunotoxins in the treatment of hematologic malignancies. Curr. Drug Targets 2006, 7, 1301–1311, doi:10.2174/138945006778559139.
[4]  Cox, C.V.; Martin, H.M.; Kearns, P.R.; Virgo, P.; Evely, R.S.; Blair, A. Characterization of a progenitor cell population in childhood T-cell acute lymphoblastic leukemia. Blood 2007, 109, 674–682, doi:10.1182/blood-2006-06-030445.
[5]  Tiftik, N.; Bolaman, Z.; Batun, S.; Ayyildiz, O.; Isikdogan, A.; Kadikoylu, G.; Muftuoglu, E. The importance of CD7 and CD56 antigens in acute leukaemias. Int. J. Clin. Pract. 2004, 58, 149–152, doi:10.1111/j.1368-5031.2004.0018.x.
[6]  Martín-Henao, G.A.; Quiroga, R.; Sureda, A.; García, J. CD7 expression on CD34+ cells from chronic myeloid leukaemia in chronic phase. Am. J. Hematol. 1999, 61, 178–186, doi:10.1002/(SICI)1096-8652(199907)61:3<178::AID-AJH4>3.0.CO;2-8.
[7]  Hutchinson, R.; Bostrom, B.C.; Sather, H.N.; Reaman, G.H. Clinical features and treatment outcome of childhood T-lineage acute lymphoblastic leukemia according to the apparent maturational stage of T-lineage leukemic blasts: A Children’s Cancer Group study. J. Clin. Oncol. 1997, 15, 2214–2221.
[8]  Lyman, S.D.; Escobar, S.; Rousseau, A.M.; Armstrong, A.; Fanslow, W.C. Identification of CD7 as a cognate of the human K12 (SECTM1) protein. J. Biol. Chem. 2000, 275, 3431–3437.
[9]  de Virgilio, M.; Lombardi, A.; Caliandro, R.; Fabbrini, M. Ribosome-inactivating proteins: From plant defense to tumor attack. Toxins 2010, 2, 2699–2737, doi:10.3390/toxins2112699.
[10]  Hartley, M.R.; Lord, J.M. Cytotoxic ribosome-inactivating lectins from plants. Biochim. Biophys. Acta 2004, 1701, 1–14, doi:10.1016/j.bbapap.2004.06.004.
[11]  Stirpe, F. Ribosome-inactivating proteins. Toxicon 2004, 44, 371–383, doi:10.1016/j.toxicon.2004.05.004.
[12]  Stirpe, F.; Barbieri, L. Ribosome-inactivating proteins up to date. FEBS Lett. 1986, 195, 1–8.
[13]  Lord, J.M.; Roberts, L.M.; Lencer, W.I. Entry of protein toxins into mammalian cells by crossing the endoplasmic reticulum membrane: Co-opting basic mechanisms of endoplasmic reticulum-associated degradation. Curr. Top. Microbiol. Immunol. 2005, 300, 149–168.
[14]  Endo, Y.; Mitsui, K.; Motizuki, M.; Tsurugi, K. The mechanism of action of ricin and related toxic lectins on eukaryotic ribosomes. The site and the characteristics of the modification in 28 S ribosomal RNA caused by the toxins. J. Biol. Chem. 1987, 262, 5908–5912.
[15]  Endo, Y.; Tsurugi, K. RNA N-glycosidase activity of ricin A-chain. Mechanism of action of the toxic lectin ricin on eukaryotic ribosomes. J. Biol. Chem. 1987, 262, 8128–8130.
[16]  Gan, Y.H.; Peng, S.Q.; Liu, H.Y. Molecular mechanism of apoptosis induced by ricin in HeLa cells. Acta Pharmacol. Sin. 2000, 21, 243–248.
[17]  Rao, P.V.; Jayaraj, R.; Bhaskar, A.S.; Kumar, O.; Bhattacharya, R.; Saxena, P.; Dash, P.K.; Vijayaraghavan, R. Mechanism of ricin-induced apoptosis in human cervical cancer cells. Biochem. Pharmacol. 2005, 69, 855–865, doi:10.1016/j.bcp.2004.11.010.
[18]  Sikriwal, D.; Ghosh, P.; Batra, J.K. Ribosome inactivating protein Saporin induces apoptosis through mitochondrial cascade, independent of translation inhibition. Int. J. Biochem. Cell Biol. 2008, 40, 2880–2888, doi:10.1016/j.biocel.2008.06.004.
[19]  Williams, J.M.; Lea, N.; Lord, J.M.; Roberts, L.M.; Milford, D.V.; Taylor, C.M. Comparison of ribosome-inactivating proteins in the induction of apoptosis. Toxicol. Lett. 1997, 91, 121–127, doi:10.1016/S0378-4274(97)03879-4.
[20]  Geden, S.E.; Gardner, R.A.; Fabbrini, M.S.; Ohashi, M.; Phanstiel, I.O.; Teter, K. Lipopolyamine treatment increases the efficacy of intoxication with Saporin and an anticancer Saporin conjugate. FEBS J. 2007, 274, 4825–4836, doi:10.1111/j.1742-4658.2007.06008.x.
[21]  Ippoliti, R.; Lendaro, E.; Benedetti, P.; Torrisi, M.; Belleudi, F.; Carpani, D.; Soria, M.; Fabbrini, M. Endocytosis of a chimera between human pro-urokinase and the plant toxin Saporin: An unusual internalization mechanism. FASEB J. 2000, 14, 1335–1344, doi:10.1096/fj.14.10.1335.
[22]  Vago, R.; Marsden, C.; Lord, J.; Ippoliti, R.; Flavell, D.; Flavell, S.; Ceriotti, A.; Fabbrini, M. Saporin and ricin A chain follow different intracellular routes to enter the cytosol of intoxicated cells. FEBS J. 2005, 272, 4983–4995, doi:10.1111/j.1742-4658.2005.04908.x.
[23]  Cimini, A.; Mei, S.; Benedetti, E.; Laurenti, G.; Koutris, I.; Cinque, B.; Cifone, M.G.; Galzio, R.; Pitari, G.; Leandro, L.D.; et al. Distinct cellular responses induced by Saporin and a trasferrin-Saporin conjugate in two different human glioblastoma cell lines. J. Cell. Physiol. 2012, 227, 939–51, doi:10.1002/jcp.22805.
[24]  Barbieri, L.; Bolognesi, A.; Stirpe, F. Purification and conjugation of type 1 ribosome-inactivating proteins. Methods Mol. Biol. 2001, 166, 71–85.
[25]  Ippoliti, R.; Lendaro, E.; D’Agostino, I.; Fiani, M.L.; Guidarini, D.; Vestri, S.; Benedetti, P.A.; Brunori, M. A chimeric Saporin-transferrin conjugate compared to ricin toxin: Role of the carrier in intracellular transport and toxicity. FASEB J. 1995, 9, 1220–1225.
[26]  Lendaro, E.; Ippoliti, R.; Bellelli, A.; Brunori, M.; Evangelista, V.; Guidarini, D.; Benedetti, P.A. Intracellular dynamics of ricin followed by fluorescence microscopy on living cells reveals a rapid accumulation of the dimeric toxin in the Golgi apparatus. FEBS Lett. 1994, 344, 99–104, doi:10.1016/0014-5793(94)00255-X.
[27]  Flavell, D.J.; Boehm, D.A.; Noss, A.; Flavell, S.U. Comparison of the potency and therapeutic efficacy of the anti-CD7 immunotoxin HB2-Saporin constructed with one or two Saporin moieties per immunotoxin molecule. Br. J. Cancer 1997, 75, 1035–1043, doi:10.1038/bjc.1997.177.
[28]  Wu, Y.N.; Gadina, M.; Tao-Cheng, J.H.; Youle, R.J. Retinoic acid disrupts the Golgi apparatus and increases the cytosolic routing of specific protein toxins. J. Cell Biol. 1994, 125, 743–753, doi:10.1083/jcb.125.4.743.
[29]  Simpson, J.C.; Dascher, C.; Roberts, L.M.; Lord, J.M.; Balch, W.E. Ricin cytotoxicity is sensitive to recycling between the endoplasmic reticulum and the Golgi complex. J. Biol. Chem. 1995, 270, 20078–20083.
[30]  Grimmer, S.; Iversen, T.G.; van Deurs, B.; Sandvig, K. Endosome to Golgi transport of ricin is regulated by cholesterol. Mol. Biol. Cell 2000, 11, 4205–4216.
[31]  Braham, K.; Junqua, S.; Tursz, T.; Le Pecq, J.B.; Lipinski, M. Kinetic analysis of choriocarcinoma cell intoxication induced by ricin and ricin A chain immunotoxin. Cancer Res. 1988, 48, 806–811.
[32]  Godal, A.; Fodstad, O.; Pihl, A. Kinetics of uptake and degradation of an abrin immunotoxin by melanoma cells and studies of the rates of cellular intoxication. Int. J. Cancer 1988, 42, 400–404, doi:10.1002/ijc.2910420316.
[33]  Kim, Y.W. Kinetic analysis of cytotoxicity. Cancer. Treat. Res. 1988, 37, 405–415, doi:10.1007/978-1-4613-1083-9_22.
[34]  Hudson, T.H.; Grillo, F.G. Brefeldin-A enhancement of ricin A-chain immunotoxins and blockade of intact ricin, modeccin, and abrin. J. Biol. Chem. 1991, 266, 18586–18592.
[35]  Wu, M. Enhancement of immunotoxin activity using chemical and biological reagents. Br. J. Cancer 1997, 75, 1347–1355, doi:10.1038/bjc.1997.228.
[36]  Casellas, P.; Bourrie, B.J.; Gros, P.; Jansen, F.K. Kinetics of cytotoxicity induced by immunotoxins. Enhancement by lysosomotropic amines and carboxylic ionophores. J. Biol. Chem. 1984, 259, 9359–9364.
[37]  Sung, C.; Wilson, D.; Youle, R.J. Comparison of protein synthesis inhibition kinetics and cell killing induced by immunotoxins. J. Biol. Chem. 1991, 266, 14159–14162.
[38]  Sandvig, K.; van Deurs, B. Delivery into cells: Lessons learned from plant and bacterial toxins. Gene Ther. 2005, 12, 865–872, doi:10.1038/sj.gt.3302525.
[39]  Yoshida, T.; Chen, C.C.; Zhang, M.S.; Wu, H.C. Disruption of the Golgi apparatus by brefeldin A inhibits the cytotoxicity of ricin, modeccin, and Pseudomonas toxin. Exp. Cell. Res. 1991, 192, 389–395, doi:10.1016/0014-4827(91)90056-Z.
[40]  Wesche, J.; Rapak, A.; Olsnes, S. Dependence of ricin toxicity on translocation of the toxin A-chain from the endoplasmic reticulum to the cytosol. J. Biol. Chem. 1999, 274, 34443–34449.
[41]  Wales, R.; Roberts, L.M.; Lord, J.M. Addition of an endoplasmic reticulum retrieval sequence to ricin A chain significantly increases its cytotoxicity to mammalian cells. J. Biol. Chem. 1993, 268, 23986–23990.
[42]  Robineau, S.; Chabre, M.; Antonny, B. Binding site of Brefeldin A at the interface between the small G-protein ADP ribosylation factor 1 (ARF1) and the nucleotide exchange factor Sec7 domain. Proc. Natl. Acad. Sci. USA 2000, 97, 9913–9918.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133