全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Transit Analysis Package: An IDL Graphical User Interface for Exoplanet Transit Photometry

DOI: 10.1155/2012/697967

Full-Text   Cite this paper   Add to My Lib

Abstract:

We present an IDL graphical user-interface-driven software package designed for the analysis of exoplanet transit light curves. The Transit Analysis Package (TAP) software uses Markov Chain Monte Carlo (MCMC) techniques to fit light curves using the analytic model of Mandal and Agol (2002). The package incorporates a wavelet-based likelihood function developed by Carter and Winn (2009), which allows the MCMC to assess parameter uncertainties more robustly than classic methods by parameterizing uncorrelated “white” and correlated “red” noise. The software is able to simultaneously analyze multiple transits observed in different conditions (instrument, filter, weather, etc.). The graphical interface allows for the simple execution and interpretation of Bayesian MCMC analysis tailored to a user’s specific data set and has been thoroughly tested on ground-based and Kepler photometry. This paper describes the software release and provides applications to new and existing data. Reanalysis of ground-based observations of TrES-1b, WASP-4b, and WASP-10b (Winn et al., 2007, 2009; Johnson et al., 2009; resp.) and space-based Kepler 4b–8b (Kipping and Bakos 2010) show good agreement between TAP and those publications. We also present new multi-filter light curves of WASP-10b and we find excellent agreement with previously published values for a smaller radius. 1. Introduction The thriving field of exoplanet science began when Doppler techniques reached the precision required to detect the radial velocity (RV) variations of stars due to their orbital interactions with planets [1, 2]. The first detection of an exoplanet orbiting a main sequence star was followed closely by dozens more (51 Pegasi b; [3], see also, [4, 5]). To date, this technique has supplied the vast majority of knowledge—both detection and characterization—of exoplanets and their environments. Five years later the first photometric observation of an exoplanet transiting the stellar disk of its parent star provided a new, rich source of information on exoplanet systems (HD 209458; [6–8]). Transit measurements provide the true masses and radii of the planet and present many opportunities for diverse followup science [9, 10]. Unlike Doppler RV exoplanet signatures, transits affect observations only during the actual event so survey missions capable of constantly monitoring stars are needed to detect exoplanets by their transits. Today, such dedicated wide field transit survey missions have begun to keep pace with Doppler RV surveys and are ushering in a new era of exoplanetary science. The bulk of this

References

[1]  B. Campbell and G. A. H. Walker, “Precision radial velocities with an absorption cell,” Publications of the Astronomical Society of the Pacific, vol. 91, pp. 540–545, 1979.
[2]  R. P. Butler, G. W. Marcy, E. Williams, C. McCarthy, P. Dosanjh, and S. S. Vogt, “Attaining doppler precision of 3 m s-1 1,2,” Publications of the Astronomical Society of the Pacific, vol. 108, no. 724, pp. 500–509, 1996.
[3]  M. Mayor and D. Queloz, “A jupiter-mass companion to a solar-type star,” Nature, vol. 378, no. 6555, pp. 355–359, 1995.
[4]  G. W. Marcy and R. P. Butler, “A planetary companion to 70 virginis,” The Astrophysical Journal Letters, vol. 464, no. 2, pp. L147–L151, 1996.
[5]  G. W. Marcy, R. P. Butler, E. Williams et al., “The planet around 51 pegasi,” The Astrophysical Journal Letters, vol. 481, no. 2, pp. 926–935, 1997.
[6]  G. W. Henry, G. Marcy, R. P. Butler, and S. S. Vogt, “HD 209458,” IAU Circulars, vol. 7307, p. 1, 1999.
[7]  G. W. Henry, G. W. Marcy, R. P. Butler, and S. S. Vogt, “A transiting "51 peg-like" planet,” The Astrophysical Journal, vol. 529, no. 1, pp. L41–L44, 2000.
[8]  D. Charbonneau, T. M. Brown, D. W. Latham, and M. Mayor, “Detection of planetary transits across a sun-like star,” The Astrophysical Journal, vol. 529, no. 1, pp. L45–L48, 2000.
[9]  D. Charbonneau, T. M. Brown, A. Burrows, and G. Laughlin, “When extrasolar planets transit their parent stars,” Protostars and Planets V, pp. 701–716, 2007.
[10]  J. N. Winn, Exoplanet Transits and Occultations, 2010.
[11]  W. J. Borucki, D. Koch, G. Basri et al., “Kepler planet-detection mission: introduction and first results,” Science, vol. 327, no. 5968, pp. 977–980, 2010.
[12]  B. Scott Gaudi, “On the size distribution of close-in extrasolar giant planets,” The Astrophysical Journal, vol. 628, no. 1, pp. L73–L76, 2005.
[13]  B. S. Gaudi, S. Seager, and G. Mallen-Ornelas, “On the period distribution of close-in extrasolar giant planets,” The Astrophysical Journal, vol. 623, no. 1 I, pp. 472–481, 2005.
[14]  S. Seager and G. Mallen-Ornelas, “Extrasolar planet transit light curves and a method to select the best planet candidates for mass follow-up,” Bulletin of the American Astronomical Society, vol. 34, p. 1138, 2002.
[15]  K. Mandel and E. Agol, “Analytic light curves for planetary transit searches,” The Astrophysical Journal Letters, vol. 580, no. 2, pp. L171–L175, 2002.
[16]  J. A. Carter, J. C. Yee, J. Eastman, B. S. Gaudi, and J. N. Winn, “Analytic approximations for transit light-curve observables, uncertainties, and covariances,” The Astrophysical Journal Letters, vol. 689, no. 1, pp. 499–512, 2008.
[17]  J. A. Carter and J. N. Winn, “Parameter estimation from time-series data with correlated errors: a wavelet-based method and its application to transit light curves,” The Astrophysical Journal Letters, vol. 704, no. 1, pp. 51–67, 2009.
[18]  J. Southworth, “Homogeneous studies of transiting extrasolar planets—I. Light-curve analyses,” Monthly Notices of the Royal Astronomical Society, vol. 386, no. 3, pp. 1644–1666, 2008.
[19]  M. J. Holman, J. N. Winn, D. W. Latham et al., “The transit light curve project. I. Four consecutive transits of the exoplanet XO-1b,” The Astrophysical Journal, vol. 652, no. 2 I, pp. 1715–1723, 2006.
[20]  E. B. Ford, “Quantifying the uncertainty in the orbits of extrasolar planets,” Astronomical Journal, vol. 129, no. 3, pp. 1706–1717, 2005.
[21]  M. Tegmark, M. A. Strauss, M. R. Blanton et al., “Cosmological parameters from sdss and wmap,” Physical Review D, vol. 69, no. 10, Article ID 103501, 2004.
[22]  D. M. Kipping, “Morphological light-curve distortions due to finite integration time,” Monthly Notices of the Royal Astronomical Society, vol. 408, no. 3, pp. 1758–1769, 2010.
[23]  J. Eastman, E. Agol, and S. Gaudi, “The TAP software package uses EXOFAST,” in prep., 2011.
[24]  A. Claret, “A new non-linear limb-darkening law for lte stellar atmosphere models III sloan filters: calculations for ?5.0?≤?log[m/h]?≤?+1, 2000?K?≤? ?≤?50000?K at several surface gravities,” Astronomy & Astrophysics, vol. 428, no. 3, pp. 1001–1005, 2004.
[25]  A. Claret, “A new non-linear limb-darkening law for LTE stellar atmosphere models: calculations for ?5.0? = ?log[M/H]? = ? +1, 2000?K = = 50000?K at several surface gravities,” Astronomy & Astrophysics, vol. 363, pp. 1081–1190, 2000.
[26]  T. Bayes and Price, “An essay towards solving a problem in the doctrine of chances,” Philosophical Transactions of the Royal Society of London, vol. 53, pp. 370–418, 1763.
[27]  N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, “Equation of state calculations by fast computing machines,” Journal of Chemical Physics, vol. 21, no. 6, pp. 1087–1092, 1953.
[28]  W. K. Hastings, “Monte carlo sampling methods using markov chains and their applications,” Biometrika, vol. 57, no. 1, pp. 97–109, 1970.
[29]  S. Geman and D. Geman, “Stochastic relaxation, gibbs distributions, and the bayesian restoration of images,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 6, no. 6, pp. 721–741, 1984.
[30]  E. B. Ford, “Improving the efficiency of markov chain monte carlo for analyzing the orbits of extrasolar planets,” The Astrophysical Journal, vol. 642, no. 1 I, pp. 505–522, 2006.
[31]  J. A. Johnson, J. N. Winn, N. E. Cabrera, and J. A. Carter, “A smaller radius for the transiting exoplanet wasp-10b,” The Astrophysical Journal Letters, vol. 692, no. 2, pp. L100–L104, 2009.
[32]  J. N. Winn, M. J. Holman, G. Torres et al., “The transit light curve project. ix. evidence for a smaller radius of the exoplanet XO-3b,” The Astrophysical Journal Letters, vol. 683, no. 2, pp. 1076–1084, 2008.
[33]  A. Gelman and D. Rubin, “Inference from iterative simulation using multiple sequences,” Statistical Sciences, vol. 7, no. 4, pp. 457–511, 1992.
[34]  J. A. Johnson, J. N. Winn, and N. E. Cabrera, “Submillimag photometry of transiting exoplanets with an orthogonal transfer array,” Bulletin of the American Astronomical Society, vol. 41, p. 192, 2009.
[35]  J. L. Tonry, S. B. Howell, M. E. Everett, S. A. Rodney, M. Willman, and C. Vanoutryve, “A search for variable stars and planetary occultations in ngc 2301. I. Techniques,” Publications of the Astronomical Society of the Pacific, vol. 117, no. 829, pp. 281–289, 2005.
[36]  S. B. Howell and J. L. Tonry, “OPTIC—THE CCD camera for planet hunting,” Bulletin of the American Astronomical Society, vol. 35, p. 1235, 2003.
[37]  D. J. Christian, N. P. Gibson, E. K. Simpson et al., “Wasp-10b: a 3mj, gas-giant planet transiting a late-type k star,” Monthly Notices of the Royal Astronomical Society, vol. 392, no. 4, pp. 1585–1590, 2009.
[38]  J. A. Dittmann, L. M. Close, L. J. Scuderi, and M. D. Morris, “Transit observations of the wasp-10 system,” The Astrophysical Journal Letters, vol. 717, no. 1, pp. 235–238, 2010.
[39]  T. Krej?ová, J. Budaj, and V. Krushevska, “Photometric observations of transiting extrasolar planet wasp—10 b,” Contributions of the Astronomical Observatory Skalnate Pleso, vol. 40, no. 2, pp. 77–82, 2010.
[40]  N. Miller, J. J. Fortney, and B. Jackson, “Inflating and deflating hot jupiters: coupled tidal and thermal evolution of known transiting planets,” The Astrophysical Journal Letters, vol. 702, no. 2, pp. 1413–1427, 2009.
[41]  J. N. Winn, M. J. Holman, and A. Roussanova, “The transit light curve project. iii. tres transits of tres-1,” The Astrophysical Journal, vol. 657, no. 2 I, pp. 1098–1106, 2007.
[42]  J. N. Winn, M. J. Holman, J. A. Carter, G. Torres, D. J. Osip, and T. Beatty, “The transit light curve project. XI. Submillimagnitude photometry of two transits of the bloated planet WASP-4b,” The Astrophysical Journal, vol. 137, pp. 3826–3833, 2009.
[43]  D. Kipping and G. Bakos, “An independent analysis of kepler-4b through kepler-8b,” The Astrophysical Journal Letters, vol. 730, no. 1, article no. 50, 2011.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413