The use of microarrays as a multiple analytic system has generated increased interest and provided a powerful analytical tool for the simultaneous detection of pathogens in a single experiment. A wide array of applications for this technology has been reported. A low density oligonucleotide microarray was generated from the genetic sequences of Y. pestis and B. anthracis and used to fabricate a microarray chip. The new generation chip, consisting of 2,240 spots in 4 quadrants with the capability of stripping/rehybridization, was designated as “Y-PESTIS/B-ANTHRACIS 4x2K Array.” The chip was tested for specificity using DNA from a panel of bacteria that may be potentially present in food. In all, 37 unique Y. pestis-specific and 83 B. anthracis-specific probes were identified. The microarray assay distinguished Y. pestis and B. anthracis from the other bacterial species tested and correctly identified the Y. pestis-specific oligonucleotide probes using DNA extracted from experimentally inoculated milk samples. Using a whole genome amplification method, the assay was able to detect as low as 1?ng genomic DNA as the start sample. The results suggest that oligonucleotide microarray can specifically detect and identify Y. pestis and B. anthracis and may be a potentially useful diagnostic tool for detecting and confirming the organisms in food during a bioterrorism event. 1. Introduction Microarray technology has great potential for use in diagnostics, and DNA microarrays have received considerable attention due to the ability to simultaneously analyse a very large number of nucleic acid sequence targets and detect multiple genetic targets or genomes from multiple pathogens on a single slide [1]. The technology has played an increasingly important role in genomics and has generated increased interest in the last decade. DNA microarrays consist of several oligonucleotide probes that have been immobilized on a solid glass support, and the technique has great potential to be used for the discrimination of closely related strains by employing oligonucleotides specific for each target organism. Hence, the design of a suitable probe set is the key in the development of microarrays as all probes on a microarray should be highly specific for their target genes. The probes should be able to bind efficiently to target sequences to allow the detection of very low abundance targets in complex mixtures with high sensitivity [2]. The use of DNA microarrays has been shown to be effective for the high-throughput detection of pathogenic microorganisms in clinical,
References
[1]
M. Seidel and R. Niessner, “Automated analytical microarrays: a critical review,” Analytical and Bioanalytical Chemistry, vol. 391, no. 5, pp. 1521–1544, 2008.
[2]
D. R. Call, “Challenges and opportunities for pathogen detection using DNA microarrays,” Critical Reviews in Microbiology, vol. 31, no. 2, pp. 91–99, 2005.
[3]
M. K. Baxi, S. Baxi, A. Clavijo, K. M. Burton, and D. Deregt, “Microarray-based detection and typing of foot-and-mouth disease virus,” Veterinary Journal, vol. 172, no. 3, pp. 473–481, 2006.
[4]
S. Bekal, R. Brousseau, L. Masson, G. Prefontaine, J. Fairbrother, and J. Harel, “Rapid identification of Escherichia coli pathotypes by virulence gene detection with DNA microarrays,” Journal of Clinical Microbiology, vol. 41, no. 5, pp. 2113–2125, 2003.
[5]
S. F. González, M. J. Krug, M. E. Nielsen, Y. Santos, and D. R. Call, “Simultaneous detection of marine fish pathogens by using multiplex PCR and a DNA microarray,” Journal of Clinical Microbiology, vol. 42, no. 4, pp. 1414–1419, 2004.
[6]
D. Z. Jin, S. Y. Wen, S. H. Chen, F. Lin, and S. Q. Wang, “Detection and identification of intestinal pathogens in clinical specimens using DNA microarrays,” Molecular and Cellular Probes, vol. 20, no. 6, pp. 337–347, 2006.
[7]
C. Maynard, F. Berthiaume, K. Lemarchand et al., “Waterborne pathogen detection by use of oligonucleotide-based microarrays,” Applied and Environmental Microbiology, vol. 71, no. 12, pp. 8548–8557, 2005.
[8]
W. J. Wilson, C. L. Strout, T. Z. DeSantis, J. L. Stilwell, A. V. Carrano, and G. L. Andersen, “Sequence-specific identification of 18 pathogenic microorganisms using microarray technology,” Molecular and Cellular Probes, vol. 16, no. 2, pp. 119–127, 2002.
[9]
T. J. T?r?k, R. V. Tauxe, R. P. Wise et al., “A large community outbreak of salmonellosis caused by intentional contamination of restaurant salad bars,” Journal of the American Medical Association, vol. 278, no. 5, pp. 389–395, 1997.
[10]
T. D. Read, S. N. Peterson, N. Tourasse et al., “The genome sequence of Bacillus anthracis Ames and comparison to closely related bacteria,” Nature, vol. 423, no. 6935, pp. 81–86, 2003.
[11]
J. Parkhill, B. W. Wren, N. R. Thomson et al., “Genome sequence of Yersinia pestis, the causative agent of plague,” Nature, vol. 413, no. 6855, pp. 523–527, 2001.
[12]
K. K. Amoako, N. Goji, T. Macmillan et al., “Development of multitarget real-time PCR for the rapid, specific, and sensitive detection of Yersinia pestis in milk and ground beef,” Journal of Food Protection, vol. 73, no. 1, pp. 18–25, 2010.
[13]
M. B. Eisen, P. T. Spellman, P. O. Brown, and D. Botstein, “Cluster analysis and display of genome-wide expression patterns,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 25, pp. 14863–14868, 1998.
[14]
S. Kawasaki, P. M. Fratamico, N. Horikoshi et al., “Multiplex real-time polymerase chain reaction assay for simultaneous detection and quantification of Salmonella species, Listeria monocytogenes, and Escherichia coli O157:H7 in ground pork samples,” Foodborne Pathogens and Disease, vol. 7, no. 5, pp. 549–554, 2010.
[15]
A. Woubit, T. Yehualaeshet, T. Habtemariam, and T. Samuel, “Novel genomic tools for specific and real-time detection of biothreat and frequently encountered foodborne pathogens,” Journal of Food Protection, vol. 75, pp. 660–670, 2012.
[16]
T. Kosti?, B. Stessl, M. Wagner, A. Sessitsch, and L. Bodrossy, “Microbial diagnostic microarray for food- and water-borne pathogens,” Microbial Biotechnology, vol. 3, no. 4, pp. 444–454, 2010.
[17]
B. Suo, Y. He, G. Paoli, A. Gehring, S. I. Tu, and X. Shi, “Development of an oligonucleotide-based microarray to detect multiple foodborne pathogens,” Molecular and Cellular Probes, vol. 24, no. 2, pp. 77–86, 2010.
[18]
X. Wang, Y. Han, Y. Li et al., “Yersinia genome diversity disclosed by Yersinia pestis genome-wide DNA microarray,” Canadian Journal of Microbiology, vol. 53, no. 11, pp. 1211–1221, 2007.
[19]
D. Zhou, Y. Han, E. Dai et al., “Identification of signature genes for rapid and specific characterization of Yersinia pestis,” Microbiology and Immunology, vol. 48, no. 4, pp. 263–269, 2004.
[20]
N. R. Treff, J. Su, X. Tao, L. E. Northrop, and R. T. Scott, “Single-cell whole-genome amplification technique impacts the accuracy of SNP microarray-based genotyping and copy number analyses,” Molecular Human Reproduction, vol. 17, no. 6, pp. 335–343, 2011.
[21]
S. K. Rhee, X. Liu, L. Wu, S. C. Chong, X. Wan, and J. Zhou, “Detection of genes involved in biodegradation and biotransformation in microbial communities by using 50-mer oligonucleotide microarrays,” Applied and Environmental Microbiology, vol. 70, no. 7, pp. 4303–4317, 2004.
[22]
D. H. Kim, B. K. Lee, Y. D. Kim, S. K. Rhee, and Y. C. Kim, “Detection of representative enteropathogenic bacteria, Vibrio spp., pathogenic Escherichia coli, Salmonella spp., Shigella spp., and Yersinia enterocolitica, using a virulence factor gene-based oligonucleotide microarray,” Journal of Microbiology, vol. 48, no. 5, pp. 682–688, 2010.
[23]
A. Loy and L. Bodrossy, “Highly parallel microbial diagnostics using oligonucleotide microarrays,” Clinica Chimica Acta, vol. 363, no. 1-2, pp. 106–119, 2006.
[24]
H. J. Kim, S. H. Park, T. H. Lee, B. H. Nahm, Y. R. Kim, and H. Y. Kim, “Microarray detection of food-borne pathogens using specific probes prepared by comparative genomics,” Biosensors and Bioelectronics, vol. 24, no. 2, pp. 238–246, 2008.
[25]
K. M. Myers, J. Gaba, and S. F. Al-Khaldi, “Molecular identification of Yersinia enterocolitica isolated from pasteurized whole milk using DNA microarray chip hybridization,” Molecular and Cellular Probes, vol. 20, no. 2, pp. 71–80, 2006.
[26]
G. Panicker, D. R. Call, M. J. Krug, and A. K. Bej, “Detection of pathogenic Vibrio spp. in shellfish by using multiplex PCR and DNA microarrays,” Applied and Environmental Microbiology, vol. 70, no. 12, pp. 7436–7444, 2004.
[27]
X. W. Wang, L. Zhang, L. Q. Jin et al., “Development and application of an oligonucleotide microarray for the detection of food-borne bacterial pathogens,” Applied Microbiology and Biotechnology, vol. 76, no. 1, pp. 225–233, 2007.
[28]
J. E. Burton, O. J. Oshota, E. North et al., “Development of a multipathogen oligonucleotide microarray for detection of Bacillus anthracis,” Molecular and Cellular Probes, vol. 19, no. 5, pp. 349–357, 2005.
[29]
N. Sergeev, M. Distler, S. Courtney et al., “Multipathogen oligonucleotide microarray for environmental and biodefense applications,” Biosensors and Bioelectronics, vol. 20, no. 4, pp. 684–698, 2004.
[30]
K. Tomioka, M. Peredelchuk, X. Zhu et al., “A multiplex polymerase chain reaction microarray assay to detect bioterror pathogens in blood,” Journal of Molecular Diagnostics, vol. 7, no. 4, pp. 486–494, 2005.
[31]
V. Chizhikov, A. Rasooly, K. Chumakov, and D. D. Levy, “Microarray analysis of microbial virulence factors,” Applied and Environmental Microbiology, vol. 67, no. 7, pp. 3258–3263, 2001.
[32]
B. X. Hong, L. F. Jiang, Y. S. Hu, D. Y. Fang, and H. Y. Guo, “Application of oligonucleotide array technology for the rapid detection of pathogenic bacteria of foodborne infections,” Journal of Microbiological Methods, vol. 58, no. 3, pp. 403–411, 2004.
[33]
N. Sergeev, M. Distler, M. Vargas, V. Chizhikov, K. E. Herold, and A. Rasooly, “Microarray analysis of Bacillus cereus group virulence factors,” Journal of Microbiological Methods, vol. 65, no. 3, pp. 488–502, 2006.