This paper presents a simple control strategy for the operation of a variable speed stand-alone wind turbine with a permanent magnet synchronous generator (PMSG). The PMSG is connected to a three phase resistive load through a switch mode rectifier and a voltage source inverter. Control of the generator side converter is used to achieve maximum power extraction from the available wind power. Control of the DC-DC bidirectional buck-boost converter, which is connected between batteries bank and DC-link voltage, is used to maintain the DC-link voltage at a constant value. It is also used to make the batteries bank stores the surplus of wind energy and supplies this energy to the load during a wind power shortage. The load side voltage source inverter uses a relatively complex vector control scheme to control the output load voltage in terms of amplitude and frequency. The control strategy works under wind speed variation as well as with variable load. Extensive simulation results have been performed using MATLAB/SIMULINK.
References
[1]
Muller, S.; Deicke, M.; de Doncker, R.W. Doubly fed induction generator system for wind turbines. IEEE Ind. App. Mag. 2002, 8, 26–33, doi:10.1109/2943.999610.
[2]
Ackerman, T.; Soder, L. An overview of wind energy status 2002. Renew. Sus. Energy Rev. 2002, 6, 67–127, doi:10.1016/S1364-0321(02)00008-4.
[3]
Bleij, J.A.M.; Chung, A.W.K.; Rudell, J.A. Power Smoothing and Performance Improvement of Wind Turbines with Variable Speed. In Proceeding of 17th British Wind Energy Association Conference, Warwick, UK, 19–21 July 1995; pp. 353–358.
[4]
Chan, T.F.; Lai, L.L. Permanent-Magnet Machines for Distributed Generation: A Review. In Proceeding of the IEEE Conference on Power Engineering Society General Meeting, Tampa, FL, USA, 24–28 June 2007; pp. 1–6.
[5]
Westlake, A.J.G.; Bumby, J.R.; Spooner, E. Damping the power-angle oscillations of a permanent magnet synchronous generator with particular reference to wind turbine applications. IEE Proc. Elec. Power Appl. 1996, 143, 269–280, doi:10.1049/ip-epa:19960285.
[6]
Polinder, H.; van der Pijl, F.F.A.; de Vilder, G.J.; Tavner, P.J. Compaison of direct-drive and geared generator concepts for wind turbine. IEEE Trans. Energy Convers. 2006, 3, 725–733.
[7]
Senjyu, T.; Tamaki, S.; Muhando, E.; Urasaki, N.; Kinjo, H.; Funabashi, T.; Fujita, H.; Sekine, H. Wind velocity and rotor position sensorless maximum power point tracking control for wind generation system. Renew. Energy 2006, 31, 1764–1775, doi:10.1016/j.renene.2005.09.020.
[8]
Fan, L.; Miao, Z.H.; Wang, X. Sensorless Maximum Power Point Tracking in Multi-Type Wind Energy Conversion Systems. In Proceeding of the 48th IEEE Conference on Decision & Control, Shanghai, China, 15–18 December 2009; pp. 6823–6828.
[9]
Hussein, M.M.; Orabi, M.; Ahmed, M.E.; Sayed, M.A. Simple Sensorless Control Technique of Permanent Magnet Synchronous Generator Wind Turbine. In Proceeding of the IEEE International Conference on Power and Energy, Kuala Lumpur, Malaysia, 29 November–1 December 2010; pp. 512–517.
[10]
Chinchilla, M.; Arnaltes, S.; Burgos, J.C. Control of permanent-magnet generator applied to variable-speed wind-energy system connected to the grid. IEEE Trans. Energy Convers. 2006, 21, 130–135, doi:10.1109/TEC.2005.853735.
[11]
Thongam, J.S.; Bouchard, P.; Ezzaidi, H.; Ouhrouche, M. Wind Speed Sensorless Maximum Power Point Tracking Control of Variable Speed Wind Energy Conversion Systems. In Proceeding of the IEEE International Conference on Electric Machines and Drives, Miami, FL, USA, 3–6 May 2009; pp. 1832–1837.
[12]
Tan, K.; Islam, S. Optimum control strategies in energy conversion of PMSG wind turbine system without mechanical sensors. IEEE Trans. Energy Convers. 2004, 19, 392–399, doi:10.1109/TEC.2004.827038.
[13]
Rolan, A.; Luna, A.; Vazquez, G.; Aquilar, D.; Azevedo, G. Modeling of a Variable Speed Wind Turbine with Permanent Magnet Synchronous Generator. In Proceeding of the IEEE International Symposium on Industrial Electronics, Seoul, Korea, 5–8 July 2009; pp. 734–739.
[14]
Haque, M.E.; Negnevitsky, M.; Muttaqui, K.M. A novel control strategy for a variable-speed wind turbine with a permanent–magnet synchronous generator. IEEE Trans. Ind. Appl. 2010, 46, 331–339, doi:10.1109/TIA.2009.2036550.
Fatu, M.; Tutelea, L.; Boldea, I.; Teodorescu, R. Novel Motion Sensorless Control of Stand Alone Permanent Magnet Synchronous Generator (PMSG): Harmonics and Negative Sequence Voltage Compensation under Nonlinear. In Proceeding of the European Conference on Power Electronics and Applications, Aalborg, Denmark, 2–5 September 2007; pp. 1–10.
[17]
Mittal, R.; Sandhu, K.S.; Jain, D.K. Battery energy storage system for variable speed driven PMSG for wind energy conversion. Int. J. Innov. Manag. Tech. 2010, 1, 300–304.
[18]
Singh, B.; KasalK, G.K. Solid-State voltage and frequency controller for a stand alone wind power generating. IEEE Trans. Power Electron. 2008, 23, 1170–1177, doi:10.1109/TPEL.2008.921190.
[19]
Zeng, R.; Nian, H.; Quan, Y.; Liu, J. Improved Load-Adaptive Control Strategy for PMSG Based Stand-Alone Wind Energy Generation. In Proceeding of the International Conference on Electrical Machines and Systems, Tokyo, Japan, 15–18 November 2009; pp. 1–6.
[20]
Esmaili, R.; Xu, L. Sensorless Control of Permanent Magnet Generator in Wind Turbine Application. In Proceeding of the IEEE 41th Annual Meeting Conference on Industry Applications, Tampa, FL, USA, 8–12 October 2006; pp. 2070–2075.