A series of new 1,3-diaryl-5-(1-phenyl-3-methyl-5-chloropyrazol-4-yl)-4,5-dihydropyrazole derivatives have been synthesized under sonication conditions in ethanol or methanol/glacial acetic acid mixture (5/1 ratio) with two equivalents of hydrazines and seven kinds of chalcone-like heteroanalogues obtained from 5-chloro-3-methyl-1-phenyl-1 H-pyrazole-4-carbaldehyde. The structures were established on the basis of NMR, IR, MS and element analysis. This method provides several advantages over current reaction methodologies, including a simple work-up procedure, shorter reaction times (2–20 min) and good yields (65%–80%).
References
[1]
Yusuf, M.; Jain, P. Synthetic and biological studies of pyrazolines and related heterocyclic compounds. Arab. J. Chem. 2011, doi:10.1016/j.arabjc.2011.09.013.
[2]
Bano, S.; Javed, K.; Ahmad, S.; Rathish, I.G.; Singh, S.; Alam, M.S. Synthesis and biological evaluation of some new 2-pyrazolines bearing benzene sulfonamide moiety as potential anti-inflammatory and anti-cancer agents. Eur. J. Med. Chem. 2011, 46, 5763–5768.
[3]
Khode, S.; Maddi, V.; Aragade, P.; Palkar, M.; Ronad, P.K.; Mamledesai, S.; Thippeswamy, A.H.M.; Satyanarayana, D. Synthesis and pharmacological evaluation of a novel series of 5-(substituted)aryl-3-(3-coumarinyl)-1-phenyl-2-pyrazolines as novel anti-inflammatory and analgesic agents. Eur. J. Med. Chem. 2009, 44, 1682–1688, doi:10.1016/j.ejmech.2008.09.020.
[4]
Rathish, I.G.; Javed, K.; Ahmad, S.; Bano, S.; Alam, M.S.; Pillai, K.K.; Singh, S.; Bagchi, V. Synthesis and antiinflammatory activity of some new 1,3,5-trisubstituted pyrazolines bearing benzene sulfonamide. Bioorg. Med. Chem. Lett. 2009, 19, 255–258.
[5]
Schmidt, A.; Dreger, A. Recent advances in the chemistry of pyrazoles. Properties, biological activities, and syntheses. Curr. Org. Chem. 2011, 15, 1423–1463, doi:10.2174/138527211795378263.
[6]
Abd-El Gawad, N.M.; Hassan, G.S.; Georgey, H.H. Design and synthesis of some pyrazole derivatives of expected anti-inflammatory and analgesic activities. Med. Chem. Res. 2012, 21, 983–994, doi:10.1007/s00044-011-9606-4.
[7]
Insuasty, B.; Chamizo, L.; Mu?oz, J.; Tigreros, A.; Quiroga, J.; Abonía, R.; Nogueras, M.; Cobo, J. Synthesis of 1-substituted 3-aryl-5-aryl(hetaryl)-2-pyrazolines and study of their antitumor activity. Arch. Pharm. 2012, 345, 275–286, doi:10.1002/ardp.201100170.
[8]
Al-Saadi, M.S.; Rostom, S.A.F.; Faidallah, H.M. 3-Methyl-2-(4-substitutedphenyl)-4,5-dihydronaphtho[1,2-c]-pyrazoles: Synthesis and in vitro biological evaluation as antitumour agents. Arch. Pharm. 2008, 341, 181–190, doi:10.1002/ardp.200700178.
[9]
Insuasty, B.; García, A.; Quiroga, J.; Abonía, R.; Ortiz, A.; Nogueras, M.; Cobo, J. Efficient microwave-assisted synthesis and antitumor activity of novel 4,4'-methylenebis[2-(3-aryl-4,5-dihydro-1H-pyrazol-5-yl)phenols]. Eur. J. Med. Chem. 2011, 46, 2436–2440, doi:10.1016/j.ejmech.2011.03.028.
[10]
Insuasty, B.; Tigreros, A.; Orozco, F.; Quiroga, J.; Abonía, R.; Nogueras, M.; Sánchez, A.; Cobo, J. Synthesis of novel pyrazolic analogues of chalcones and their 3-aryl-4-(3-aryl-4,5-dihydro-1H-pyrazol-5-yl)-1-phenyl-1H-pyrazole derivatives as potential antitumor agents. Bioorg. Med. Chem. 2010, 18, 4965–4974.
[11]
Deng, H.; Yu, Z.Y.; Shi, G.Y.; Chen, M.J.; Tao, K.; Hou, T.P. Synthesis and in vitro antifungal evaluation of 1,3,5-trisubstituted-2-pyrazoline derivatives. Chem. Biol. Drug Des. 2012, 79, 279–289, doi:10.1111/j.1747-0285.2011.01308.x.
[12]
Parashar, B.; Jain, A.; Bharadwaj, S.; Sharma, V.K. Synthesis and pharmacological properties of some novel pyrazolidine and pyrazole derivatives. Med. Chem. Res. 2012, 21, 1692–1699, doi:10.1007/s00044-011-9687-0.
[13]
Gupta, M.; Paul, S.; Gupta, R. Efficient and novel one-pot synthesis of antifungal active 1-substituted-8-aryl-3-alkyl/aryl-4H-pyrazolo[4,5-f][1,2,4]triazolo[4,3-b][1,2,4]triazepines using solid support. Eur. J. Med. Chem. 2011, 46, 631–635, doi:10.1016/j.ejmech.2010.11.043.
[14]
Keter, F.K.; Darkwa, J. Perspective: The potential of pyrazole-based compounds in medicine. Biometals 2012, 25, 9–21, doi:10.1007/s10534-011-9496-4.
[15]
Agrawal, M.; Sonar, P.K.; Saraf, S.K. Synthesis of 1,3,5-trisubstituted pyrazoline nucleus containing compounds and screening for antimicrobial activity. Med. Chem. Res. 2012, 21, 3376–3381, doi:10.1007/s00044-011-9871-2.
[16]
Gong, Z.-L.; Xie, Y.-S.; Zhao, B.-X.; Lv, H.-S.; Liu, W.-Y. The synthesis, x-ray crystal structure and optical properties of novel 5-aryl-3-ferrocenyl-1-pyridazinyl-pyrazoline derivatives. J. Fluoresc. 2011, 21, 355–364, doi:10.1007/s10895-010-0724-z.
[17]
Gong, Z.-L.; Zhao, B.-X.; Liu, W.-Y.; Lv, H.-S. A new highly selective “turn on” fluorescent sensor for zinc ion based on a pyrazoline derivative. J. Photochem. Photobiol. A 2011, 218, 6–10.
[18]
Liu, W.-Y.; Xie, Y.-S.; Zhao, B.-X.; Wang, B.-S.; Lv, H.-S.; Gong, Z.-L.; Song, L.; Zheng, L.-W. The synthesis, X-ray crystal structure and optical properties of novel 5-aryl-1-arylthiazolyl-3-ferrocenyl-pyrazoline derivatives. J. Photochem. Photobiol. A 2010, 214, 135–144, doi:10.1016/j.jphotochem.2010.06.017.
[19]
Bian, B.S.; Ji, S.; Shi, H. Synthesis and fluorescent property of some novel bischromophore compounds containing pyrazoline and naphthalimide groups. Dye Pigment. 2008, 76, 348–352, doi:10.1016/j.dyepig.2006.08.050.
[20]
Tao, Y.T.; Balasubramaniam, E. Organic light-emitting diodes based on variously substituted pyrazoloquinolines as emitting material. J. Matr. Chem. 2001, 13, 1207–1212.
[21]
Wang, P.; Onozawa-Komatsuzaki, N.; Himeda, Y.; Sugihara, H.; Arakawa, H.; Kasuga, K. 3-(2-Pyridyl)-2-pyrazoline derivatives: Novel fluorescent probes for Zn2+ ion. Tetrahedron Lett. 2001, 42, 9199–9201.
[22]
Gok, S.; Demet, M.M.; ?zdemir, A.; Turan-Zitouni, G. Evaluation of antidepressant-like effect of 2-pyrazoline derivatives. Med. Chem. Res. 2010, 19, 94–101, doi:10.1007/s00044-009-9176-x.
[23]
Kaplancikli, Z.A.; ?zdemir, A.; Turan-Zitouni, G.; Altintop, M.D.; Can, O.D. New pyrazoline derivatives and their antidepressant activity. Eur. J. Med. Chem. 2010, 45, 4383–4387, doi:10.1016/j.ejmech.2010.06.011.
[24]
Amnerkar, N.D.; Bhusari, K.P. Synthesis, anticonvulsant activity and 3D-QSAR study of some prop-2-eneamido and 1-acetyl-pyrazolin derivatives of aminobenzothiazole. Eur. J. Med. Chem. 2010, 45, 149–159, doi:10.1016/j.ejmech.2009.09.037.
[25]
Siddiqui, N.; Alam, P.; Ahsan, W. Design, synthesis, and in-vivo pharmacological screening of N,3-(substituteddiphenyl)-5-phenyl-1H-pyrazoline-1-carbothioamide derivatives. Arch. Pharm. 2009, 342, 173–181, doi:10.1002/ardp.200800130.
[26]
De Los Santos, J.M.; López, Y.; Aparicio, D.; Palacios, F. A convenient synthesis of substituted pyrazolidines and azaproline derivatives through highly regio- and diastereoselective reduction of 2-pyrazolines. J. Org. Chem. 2008, 73, 550–557.
[27]
Jung, M.E.; Min, S.-J.; Houk, K.N.; Ess, D. Synthesis and relative stability of 3,5-diacyl-4,5-dihydro-1H-pyrazoles prepared by dipolar cycloaddition of enones and R-diazoketones. J. Org. Chem. 2004, 69, 9085–9089.
[28]
Suga, H.; Furihata, Y.; Sakamoto, A.; Itoh, K.; Okumura, Y.; Tsuchida, T.; Kakehi, A.; Baba, T. Asymmetric cycloaddition reactions of diazoesters with 2-alkenoic acid derivatives catalyzed by binaphthyldiimine-Ni(II) complexes. J. Org. Chem. 2011, 76, 7377–7387, doi:10.1021/jo201061f.
[29]
Alex, K.; Tillack, A.; Schwarz, N.; Beller, M. Zinc-catalyzed synthesis of pyrazolines and pyrazoles via hydrohydrazination. Org. Lett. 2008, 10, 2377–2379.
[30]
Cui, S.-L.; Wang, J.; Wang, Y.-G. Facile access to pyrazolines via domino reaction of the Huisgen zwitterions with aziridines. Org. Lett. 2008, 10, 13–16.
[31]
Wang, Y.; Hu, W.J.; Song, W.; Lim, R.K.V.; Lin, Q. Discovery of long-wavelength photoactivatable diaryltetrazoles for bioorthogonal 1,3-dipolar cycloaddition reactions. Org. Lett. 2008, 10, 3725–3728, doi:10.1021/ol801350r.
[32]
Li, F.; Xie, Z.F.; Liu, F.M. Syntheses and fluorescent property of 5-(2-Phenyl-1,2,3-triazoly)-3- aryl pyrazoline derivatives. Chem. J. Chin. U 2006, 26, 1058–1061. (in Chinese).
[33]
Fischer, E.; Knovenagel, O. Ueber die verbindungen des phenylhydrazins mit acrole?n, mesityloxyd und allylbromid. Ann. Chem. 1887, 239, 194–206, doi:10.1002/jlac.18872390205.
[34]
Azarifar, D.; Maleki, B. Silica-supported synthesis of some 1,3,5-trisubstituted 2-pyrazolines under solvent-free and microwave irradiation conditions. J. Heterocycl. Chem. 2005, 42, 157–159.
[35]
Levai, A. Synthesis of heterocyclic compounds by the reactions of exocyclic α,β-unsaturated ketones. J. Heterocycl. Chem. 2004, 41, 299–310, doi:10.1002/jhet.5570410301.
[36]
Levai, A. Synthesis of 2-pyrazolines by the reactions of α,β-unsaturated aldehydes, ketones, and esters with diazoalkanes, nitrile imines, and hydrazines. J. Heterocycl. Chem. 2002, 39, 1–13, doi:10.1002/jhet.5570390101.
[37]
Joshi, M.J.; Vekariya, P.B.; Dodiya, B.L.; Ghetiya, R.M.; Joshi, H.S. Synthesis and biological study of some new chalcones and oxopyrimidines containing imidazo[1,2-a]pyridine nucleus. J. Heterocycl. Chem. 2012, 49, 130–134.
[38]
Trilleras, J.; de la Torre, P.; Pacheco, D.J.; Quiroga, J.; Nogueras, M.; Cobo, J. Solvent-free microwave-assisted synthesis o substituted pyridines using NH4OAc as nitrogen source. Lett. Org. Chem. 2011, 8, 652–655, doi:10.2174/157017811799304296.
[39]
Rostom, S.A.F.; Badr, M.H.; El Razik, H.A.A.; Ashour, H.M.A.; Abdel Wahab, A.E. Synthesis of some pyrazolines and pyrimidines derived from polymethoxy chalcones as anticancer and antimicrobial agents. Arch. Pharm. 2011, 344, 572–587, doi:10.1002/ardp.201100077.
[40]
Foroumadi1, A.; Emami, S.; Sorkhi, M.; Nakhjiri, S.; Nazarian, Z.; Heydari, S.; Ardestani, S.K.; Poorrajab, F.; Shafiee1, A. Chromene-based synthetic chalcones as potent antileishmanial agents: Synthesis and biological activity. Chem. Biol. Drug Des. 2010, 75, 590–596.
[41]
Sivakumar, P.M.; Ganesan, S.; Veluchamy, P.; Doble, M. Novel chalcones and 1,3,5-triphenyl-2-pyrazoline derivatives as antibacterial agents. Chem. Biol. Drug Des. 2010, 76, 407–411, doi:10.1111/j.1747-0285.2010.01020.x.
[42]
Sreevidya, T.V.; Narayana, B.; Yathirajan, H.S. Synthesis and characterization of some chalcones and their cyclohexenone derivatives. Cent. Eur. J. Chem. 2010, 8, 174–181.
[43]
Voskien?, A.; Mickevi?ius, V. Cyclization of chalcones to isoxazole and pyrazole derivatives. Chem. Heterocycl. Compd. 2009, 45, 1485–1488, doi:10.1007/s10593-010-0455-8.
Zare, L.; Mahmoodi, N.O.; Yahyazadeh, A.; Nikpassand, M. Ultrasound-promoted regio and chemoselective synthesis of pyridazinones and phthalazinones catalyzed by ionic liquid [bmim]Br/AlCl3. Ultrason. Sonochem 2012, 19, 740–744, doi:10.1016/j.ultsonch.2011.11.008.
Zhang, Z.-H.; Li, J.-J.; Li, T.-S. Ultrasound-assisted synthesis of pyrroles catalyzed by zirconium chloride under solvent-free conditions. Ultrason. Sonochem 2012, 19, 264–269.
[50]
Nagargoje, D.; Mandhane, P.; Shingote, S.; Badadhe, P.; Gill, C. Ultrasound assisted one pot synthesis of imidazole derivatives using diethyl bromophosphate as an oxidant. Ultrason. Sonochem 2012, 19, 94–96, doi:10.1016/j.ultsonch.2011.05.009.
[51]
Dabiri, M.; Noroozi Tisseh, Z.; Bahramnejad, M.; Bazgir, A. Sonochemical multi-component synthesis of spirooxindoles. Ultrason. Sonochem 2011, 18, 1153–1159.
[52]
Trilleras, J.; Insuasty, B.; Abonía, R.; Nogueras, M.; Cobo, J. Síntesis y estudio de la actividad antitumoral y antituberculosa de análogos heterocíclicos enónicos derivados del pirazol. Revista Ciencias 2008, 12, 123–140.
[53]
Trilleras, J.; Quiroga, J.; Cobo, J.; Low, J.N.; Glidewelld, C. Hydrogen-bonded chains in 3-(5-chloro-3-methyl-1-phenyl-1H-pyrazol-4-yl)-1-(4-methoxyphenyl)-propenone and 3-(5-chloro-3-methyl-1-phenyl-1H-pyrazol-4-yl)-1-(3,4,5-trimethoxyphenyl)propenone. Acta Cryst. 2005, C61, 414–416.
[54]
Trilleras, J.; Quiroga, J.; Cobo, J.; Low, J.N.; Glidewelld, C. 5-Chloro-3-methyl-1-phenyl-1H-pyrazole-4-carbaldehyde: Sheets built from C—H---O and C—H---π(arene) hydrogen bonds. Acta Cryst. 2005, E61, 1055–1057.
[55]
Xie, Z.; Moa, Z.; Liu, G.; Liu, F. Crystal structure of 5-pyrazol-4,5-dihydropyrazoles derivatives. J. Heterocycl. Chem. 2008, 45, 1485–1488, doi:10.1002/jhet.5570450539.
[56]
Ziarati, A.; Safaei-Ghomi, J.; Rohani, S. Sonochemically synthesis of pyrazolones using reusable catalyst CuI nanoparticles that was prepared by sonication. Ultrason. Sonochem 2013, 20, 1069–1075, doi:10.1016/j.ultsonch.2013.01.005.
[57]
Shekouhy, M.; Hasaninejad, A. Ultrasound-promoted catalyst-free one-pot four component synthesis of 2H-indazolo[2,1-b]phthalazine-triones in neutral ionic liquid 1-butyl-3-methylimidazolium bromide. Ultrason. Sonochem 2012, 19, 307–313, doi:10.1016/j.ultsonch.2011.07.011.
[58]
Mason, T.J. Sonochemistry sonoprocessing: The link the trends and (pobably) the future. Ultrason. Sonochem 2003, 10, 175–179, doi:10.1016/S1350-4177(03)00086-5.