全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The Effect of Gelation on the Apparent Magnetism of ZnFe2O4 Sol-Gel Systems

DOI: 10.5539/apr.v5n1p19

Full-Text   Cite this paper   Add to My Lib

Abstract:

Experiments have shown that for thixotropic sol-gel systems consisting of ZnFe2O4 nanoparticles without any matrix material, the measured magnetization, or susceptibility of gels, are greater than those of sols. For the reduced susceptibility, a system with a volume fraction of particles of fv=2.0% is lower than a system with fv=1.5%. These results have been interpreted in terms of a magnetization mechanism based on the Brownian rotation of the moments fixed inside the colloidal particles, which would be dramatically affected by the non-magnetic hydrodynamic interaction. For weakly cross-linked gels, the translational degree of freedom is “frozen” while the rotational degree of freedom remains unchanged, so that their hydrodynamic interaction effect is weaker, and they are more easily magnetized than the sols with both rotational and translational degrees of freedom. The action of gelation preventing the hydrodynamic interaction effect on the magnetization process can be referred to as the “gelation decoupling”. Correspondingly, such behavior of the hydrodynamic interaction in affecting the apparent magnetism can be referred to as a “viscomagnetic effect”.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413