全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Cutting-Edge High-Power Ultrafast Thin Disk Oscillators

DOI: 10.3390/app3020355

Keywords: ultrafast laser, high-power laser, semiconductor saturable absorber mirror (SESAM), thin disk laser

Full-Text   Cite this paper   Add to My Lib

Abstract:

A growing number of applications in science and industry are currently pushing the development of ultrafast laser technologies that enable high average powers. SESAM modelocked thin disk lasers (TDLs) currently achieve higher pulse energies and average powers than any other ultrafast oscillator technology, making them excellent candidates in this goal. Recently, 275 W of average power with a pulse duration of 583 fs were demonstrated, which represents the highest average power so far demonstrated from an ultrafast oscillator. In terms of pulse energy, TDLs reach more than 40 μJ pulses directly from the oscillator. In addition, another major milestone was recently achieved, with the demonstration of a TDL with nearly bandwidth-limited 96-fs long pulses. The progress achieved in terms of pulse duration of such sources enabled the first measurement of the carrier-envelope offset frequency of a modelocked TDL, which is the first key step towards full stabilization of such a source. We will present the key elements that enabled these latest results, as well as an outlook towards the next scaling steps in average power, pulse energy and pulse duration of such sources. These cutting-edge sources will enable exciting new applications, and open the door to further extending the current performance milestones.

References

[1]  Sibbett, W.; Lagatsky, A.A.; Brown, C.T.A. The development and application of femtosecond laser systems. Opt. Express 2012, 20, 6989–7001, doi:10.1364/OE.20.006989.
[2]  Südmeyer, T.; Marchese, S.V.; Hashimoto, S.; Baer, C.R.E.; Gingras, G.; Witzel, B.; Keller, U. Femtosecond laser oscillators for high-field science. Nat. Photonics 2008, 2, 599–604, doi:10.1038/nphoton.2008.194.
[3]  McPherson, A.; Gibson, G.; Jara, H.; Johann, U.; Luk, T.S.; McIntyre, I.A.; Boyer, K.; Rhodes, C.K. Studies of multiphoton production of vacuum-ultraviolet radiation in the rare gases. J. Opt. Soc. Am. B 1987, 4, 595–601, doi:10.1364/JOSAB.4.000595.
[4]  Ferray, M.; L’Huillier, A.; Li, X.F.; Lompré, L.A.; Mainfray, G.; Manus, C. Multiple-harmonic conversion of 1064 nm radiation in rare gases. J. Phys. B 1988, 21, L31–L35, doi:10.1088/0953-4075/21/3/001.
[5]  Keller, U. Femtosecond to attosecond optics. IEEE Photon. J. 2010, 2, 225–228, doi:10.1109/JPHOT.2010.2047008.
[6]  Heckl, O.H.; Baer, C.R.E.; Kr?nkel, C.; Marchese, S.V.; Schapper, F.; Holler, M.; Südmeyer, T.; Robinson, J.S.; Tisch, J.W.G.; Couny, F.; et al. High harmonic generation in a gas-filled hollow-core photonic crystal fiber. Appl. Phys. B 2009, 97, 369–373, doi:10.1007/s00340-009-3771-x.
[7]  Kim, S.; Jin, J.H.; Kim, Y.J.; Park, I.Y.; Kim, Y.; Kim, S.W. High-harmonic generation by resonant plasmon field enhancement. Nature 2008, 453, 757–760, doi:10.1038/nature07012.
[8]  Russbueldt, P.; Mans, T.; Weitenberg, J.; Hoffmann, H.D.; Poprawe, R. Compact diode-pumped 1.1 kW Yb:YAG Innoslab femtosecond amplifier. Opt. Lett. 2010, 34, 4169–4171.
[9]  Eidam, T.; Hanf, S.; Seise, E.; Andersen, T.V.; Gabler, T.; Wirth, C.; Schreiber, T.; Limpert, J.; Tünnermann, A. Femtosecond fiber CPA system emitting 830 W average output power. Opt. Lett. 2010, 35, 94–96, doi:10.1364/OL.35.000094.
[10]  Metzger, T.; Schwarz, A.; Teisset, C.Y.; Sutter, D.; Killi, A.; Kienberger, R.; Krausz, F. High-repetition-rate picosecond pump laser based on a Yb:YAG disk amplifier for optical parametric amplification. Opt. Lett. 2009, 2009, 2123–2125.
[11]  Giesen, A.; Hügel, H.; Voss, A.; Wittig, K.; Brauch, U.; Opower, H. Scalable concept for diode-pumped high-power solid-state lasers. Appl. Phys. B 1994, 58, 365–372, doi:10.1007/BF01081875.
[12]  Giesen, A.; Speiser, J. Fifteen years of work on thin-disk lasers: results and scaling laws. IEEE J. Sel. Top. Quantum Electron. 2007, 13, 598–609, doi:10.1109/JSTQE.2007.897180.
[13]  Keller, U. Ultrafast solid-state laser oscillators: A success story for the last 20 years with no end in sight. Appl. Phys. B 2010, 100, 15–28, doi:10.1007/s00340-010-4045-3.
[14]  Keller, U.; Weingarten, K.J.; K?rtner, F.X.; Kopf, D.; Braun, B.; Jung, I.D.; Fluck, R.; H?nninger, C.; Matuschek, N.; Aus der Au, J. Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers. IEEE J. Sel. Top. Quantum Electron. 1996, 2, 435–453, doi:10.1109/2944.571743.
[15]  Keller, U.; Miller, D.A.B.; Boyd, G.D.; Chiu, T.H.; Ferguson, J.F.; Asom, M.T. Solid-state low-loss intracavity saturable absorber for Nd:YLF lasers: An antiresonant semiconductor Fabry-Perot saturable absorber. Opt. Lett. 1992, 17, 505–507, doi:10.1364/OL.17.000505.
[16]  Aus der Au, J.; Spühler, G.J.; Südmeyer, T.; Paschotta, R.; H?vel, R.; Moser, M.; Erhard, S.; Karszewski, M.; Giesen, A.; Keller, U. 16.2W average power from a diode-pumped femtosecond Yb:YAG thin disk laser. Opt. Lett. 2000, 25, 859–861, doi:10.1364/OL.25.000859.
[17]  Saraceno, C.J.; Emaury, F.; Heckl, O.H.; Baer, C.R.E.; Hoffmann, M.; Schriber, C.; Golling, M.; Sudmeyer, T.; Keller, U. 275 W average output power from a femtosecond thin disk oscillator operated in a vacuum environment. Opt. Express 2012, 20, 23535–23541, doi:10.1364/OE.20.023535.
[18]  Bauer, D.; Zawischa, I.; Sutter, D.H.; Killi, A.; Dekorsy, T. Mode-locked Yb:YAG thin-disk oscillator with 41 μJ pulse energy at 145 W average infrared power and high power frequency conversion. Opt. Express 2012, 20, 9698–9704.
[19]  Saraceno, C.J.; Schriber, C.; Mangold, M.; Hoffmann, M.; Heckl, O.H.; Baer, C.R.E.; Golling, M.; Südmeyer, T.; Keller, U. SESAMs for high-power oscillators: Design guidelines and damage thresholds. IEEE J. Sel. Top. Quantum Electron. 2012, 18, 29–41.
[20]  Südmeyer, T.; Kr?nkel, C.; Baer, C.R.E.; Heckl, O.H.; Saraceno, C.J.; Golling, M.; Peters, R.; Petermann, K.; Huber, G.; Keller, U. High-power ultrafast thin disk laser oscillators and their potential for sub-100-femtosecond pulse generation. Appl. Phys. B 2009, 97, 281–295, doi:10.1007/s00340-009-3700-z.
[21]  Saraceno, C.J.; Heckl, O.H.; Baer, C.R.E.; Schriber, C.; Golling, M.; Beil, K.; Kr?nkel, C.; Südmeyer, T.; Huber, G.; Keller, U. Sub-100 femtosecond pulses from a SESAM modelocked thin disk laser. Appl. Phys. B 2012, 106, 559–562, doi:10.1007/s00340-012-4900-5.
[22]  Saraceno, C.J.; Pekarek, S.; Heckl, O.H.; Baer, C.R.E.; Schriber, C.; Golling, M.; Beil, K.; Kr?nkel, C.; Huber, G.; Keller, U.; et al. Self-referenceable frequency comb from an ultrafast thin disk laser. Opt. Express 2012, 20, 9650–9656, doi:10.1364/OE.20.009650.
[23]  Huonker, M.; Voss, A.; Schmitz, C. Laserverst?rkersystem: Offenlegungsschrift des deutschen Patent-und Markenamts. (DE 100 61 424 A 1), 2000.
[24]  Mende, J.; Schmid, E.; Speiser, J.; Spindler, G.; Giesen, A. Thin disk laser: Power scaling to the kW regime in fundamental mode operation. Proc. SPIE 2009, 7193, doi:10.1117/12.809031.
[25]  Killi, A.; Stolzenburg, C.; Zawischa, I.; Sutter, D.; Kleinbauer, J.; Schad, S.; Brockmann, R.; Weiler, S.; Neuhaus, J.; Kalfhues, S.; et al. The broad applicability of the disk laser principle—from CW to ps. Proc. SPIE 2009, 7193, doi:10.1117/12.808255.
[26]  Baer, C.R.E.; Kr?nkel, C.; Saraceno, C.J.; Heckl, O.H.; Golling, M.; Peters, R.; Petermann, K.; Südmeyer, T.; Huber, G.; Keller, U. Femtosecond thin disk laser with 141 W of average power. Opt. Lett. 2010, 35, 2302–2304, doi:10.1364/OL.35.002302.
[27]  Baer, C.R.E.; Heckl, O.H.; Saraceno, C.J.; Schriber, C.; Kr?nkel, C.; Südmeyer, T.; Keller, U. Frontiers in passively mode-locked high-power thin disk laser oscillators. Opt. Express 2012, 20, 7054–7065.
[28]  K?rtner, F.X.; Keller, U. Stabilization of soliton-like pulses with a slow saturable absorber. Opt. Lett. 1995, 20, 16–18, doi:10.1364/OL.20.000016.
[29]  Paschotta, R.; Keller, U. Passive mode locking with slow saturable absorbers. Appl. Phys. B 2001, 73, 653–662, doi:10.1007/s003400100726.
[30]  Kuhl, J.; Heppner, J. Compression of femtosecond optical pulses with dielctric multilayer interferometers. IEEE Trans. Quantum Electron. 1986, QE-22, 182–185.
[31]  Heppner, J.; Kuhl, J. Intracavity chirp compensation in a colliding pulse mode-locked laser using thin-film interferometers. Appl. Phys. Lett. 1985, 47, 453–456, doi:10.1063/1.96144.
[32]  Marchese, S.V.; Baer, C.R.E.; Engqvist, A.G.; Hashimoto, S.; Maas, D.J.H.C.; Golling, M.; Südmeyer, T.; Keller, U. Femtosecond thin disk laser oscillator with pulse energy beyond the 10-microjoule level. Opt. Express 2008, 16, 6397–6407, doi:10.1364/OE.16.006397.
[33]  Marchese, S.V.; Südmeyer, T.; Golling, M.; Grange, R.; Keller, U. Pulse energy scaling to 5 μJ from a femtosecond thin disk laser. Opt. Lett. 2006, 31, 2728–2730, doi:10.1364/OL.31.002728.
[34]  Paschotta, R.; H?ring, R.; Keller, U.; Garnache, A.; Hoogland, S.; Tropper, A.C. Soliton-like pulse-shaping mechanism in passively mode-locked surface-emitting semiconductor lasers. Appl. Phys. B 2002, 75, 445–451, doi:10.1007/s00340-002-1014-5.
[35]  Nibbering, E.T.J.; Grillon, G.; Franco, M.A.; Prade, B.S.; Mysyrowicz, A. Determination of the inertial contribution to the nonlinear refractive index of air, N2, and O2 by use of unfocused high-intensity femtosecond laser pulses. J. Opt. Soc. Am. B 1997, 14, 650–660, doi:10.1364/JOSAB.14.000650.
[36]  Lehmeier, H.J.; Leupacher, W.; Penzkofer, A. Nonresonant 3rd order hyperpolarizability of rare-gases and n2 determined by 3rd harmonic-generation. Opt. Commun. 1985, 56, 67–72, doi:10.1016/0030-4018(85)90069-0.
[37]  Neuhaus, J.; Kleinbauer, J.; Killi, A.; Weiler, S.; Sutter, D.; Dekorsy, T. Passively mode-locked Yb:YAG thin-disk laser with pulse energies exceeding 13 μJ by use of an active multipass geometry. Opt. Lett. 2008, 33, 726–728, doi:10.1364/OL.33.000726.
[38]  Neuhaus, J.; Bauer, D.; Zhang, J.; Killi, A.; Kleinbauer, J.; Kumkar, M.; Weiler, S.; Guina, M.; Sutter, D.H.; Dekorsy, T. Subpicosecond thin-disk laser oscillator with pulse energies of up to 25.9 microjoules by use of an active multipass geometry. Opt. Express 2008, 16, 20530–20539, doi:10.1364/OE.16.020530.
[39]  Shimoji, Y.; Fay, A.T.; Chang, R.S.F.; Djeu, N. Direct measurement of the nonlinear refractive-index of air. J. Opt. Soc. Am. B 1989, 6, 1994–1998, doi:10.1364/JOSAB.6.001994.
[40]  Spühler, G.J.; Weingarten, K.J.; Grange, R.; Krainer, L.; Haiml, M.; Liverini, V.; Golling, M.; Schon, S.; Keller, U. Semiconductor saturable absorber mirror structures with low saturation fluence. Appl. Phys. B 2005, 81, 27–32, doi:10.1007/s00340-005-1879-1.
[41]  Maas, D.J.H.C.; Bellancourt, A.R.; Hoffmann, M.; Rudin, B.; Barbarin, Y.; Golling, M.; Südmeyer, T.; Keller, U. Growth parameter optimization for fast quantum dot SESAMs. Opt. Express 2008, 16, 18646–18656, doi:10.1364/OE.16.018646.
[42]  Sch?ttiger, F.; Bauer, D.; Demsar, J.; Dekorsy, T.; Kleinbauer, J.; Sutter, D.H.; Puustinen, J.; Guina, M. Characterization of InGaAs and InGaAsN semiconductor saturable absorber mirrors for high-power mode-locked thin-disk lasers. Appl. Phys. B 2011, 106, 605–612.
[43]  Schibli, T.R.; Thoen, E.R.; K?rtner, F.X.; Ippen, E.P. Suppression of Q-switched mode locking and break-up into multiple pulses by inverse saturable absorption. Appl. Phys. B 2000, 70, S41–S49, doi:10.1007/s003400000331.
[44]  Innerhofer, E.; Südmeyer, T.; Brunner, F.; H?ring, R.; Aschwanden, A.; Paschotta, R.; Keller, U.; H?nninger, C.; Kumkar, M. 60 W average power in 810-fs pulses from a thin-disk Yb:YAG laser. Opt. Lett. 2003, 28, 367–369, doi:10.1364/OL.28.000367.
[45]  Grange, R.; Haiml, M.; Paschotta, R.; Spuhler, G.J.; Krainer, L.; Golling, M.; Ostinelli, O.; Keller, U. New regime of inverse saturable absorption for self-stabilizing passively mode-locked lasers. Appl. Phys. B 2005, 80, 151–158, doi:10.1007/s00340-004-1622-3.
[46]  Maas, D.J.H.C.; Rudin, B.; Bellancourt, A.-R.; Iwaniuk, D.; Marchese, S.V.; Südmeyer, T.; Keller, U. High precision optical characterization of semiconductor saturable absorber mirrors. Opt. Express 2008, 16, 7571–7579, doi:10.1364/OE.16.007571.
[47]  Haiml, M.; Grange, R.; Keller, U. Optical characterization of semiconductor saturable absorbers. Appl. Phys. B 2004, 79, 331–339, doi:10.1007/s00340-004-1535-1.
[48]  Thoen, E.R.; Koontz, E.M.; Joschko, M.; Langlois, P.; Schibli, T.R.; K?rtner, F.X.; Ippen, E.P.; Kolodziejski, L.A. Two-photon absorption in semiconductor saturable absorber mirrors. Appl. Phys. Lett. 1999, 74, 3927–3929, doi:10.1063/1.124226.
[49]  Maas, D.J.H.C. MIXSELs—A New Class of Ultrafast Semiconductor Lasers. In Proceeding of Lasers and Electro-Optics, 2007 and the International Quantum Electronics Conference, Munich, Germany, 17–22 June 2007.
[50]  Van Stryland, E.W.; Woodall, M.A.; Vanherzeele, H.; Soileau, M.J. Energy band-gap dependence of two-photon absorption. Opt. Lett. 1985, 10, 490–492, doi:10.1364/OL.10.000490.
[51]  H?nninger, C.; Paschotta, R.; Morier-Genoud, F.; Moser, M.; Keller, U. Q-switching stability limits of continuous-wave passive mode locking. J. Opt. Soc. Am. B 1999, 16, 46–56, doi:10.1364/JOSAB.16.000046.
[52]  Haiml, M.; Siegner, U.; Morier-Genoud, F.; Keller, U.; Luysberg, M.; Lutz, R.C.; Specht, P.; Weber, E.R. Optical nonlinearity in low-temperature-grown GaAs: Microscopic limitations and optimization strategies. Appl. Phys. Lett. 1999, 74, 3134–3136, doi:10.1063/1.124086.
[53]  Schieffer, S.L.; Berger, J.A.; Rickman, B.L.; Nayyar, V.P.; Schroeder, W.A. Thermal effects in semiconductor saturable-absorber mirrors. J. Opt. Soc. Am. B 2012, 29, 543–552, doi:10.1364/JOSAB.29.000543.
[54]  Keller, U.; Tropper, A.C. Passively modelocked surface-emitting semiconductor lasers. Phys. Rep. 2006, 429, 67–120, doi:10.1016/j.physrep.2006.03.004.
[55]  Kuznetsov, M.; Hakimi, F.; Sprague, R.; Mooradian, A. Design and characteristics of high-power (>0.5-w cw) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular tem00 beams. IEEE J. Sel. Top. Quantum Electron. 1999, 5, 561–573.
[56]  Chilla, J.; Butterworth, S.; Zeitschel, A.; Charles, J.; Caprara, A.; Reed, M.; Spinelli, L. High power optically pumped semiconductor lasers. Proc. SPIE 2004, doi:10.1117/12.549003.
[57]  Südmeyer, T.; Maas, D.J.H.C.; Keller, U. Mode-locked Semiconductor Disk Lasers. In Semiconductor Disk Lasers; Okhotnikov, O., Ed.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2010.
[58]  Herriott, D.; Kogelnik, H.; Kompfner, R. Off-axis paths in spherical mirror interferometers. Appl. Opt. 1964, 3, 523–526, doi:10.1364/AO.3.000523.
[59]  Druon, F.; Balembois, F.; Georges, P. Laser crystals for the production of ultra-short laser pulses. Ann. Chim. Sci. Mat. 2003, 28, 47–72, doi:10.1016/j.anncsm.2003.10.001.
[60]  Brunner, F.; Innerhofer, E.; Marchese, S.V.; Südmeyer, T.; Paschotta, R.; Usami, T.; Ito, H.; Kurimura, S.; Kitamura, K.; Arisholm, G.; et al. Powerful red-green-blue laser source pumped with a mode-locked thin disk laser. Opt. Lett. 2004, 29, 1921–1923, doi:10.1364/OL.29.001921.
[61]  Pronin, O.; Brons, J.; Grasse, C.; Pervak, V.; Boehm, G.; Amann, M.C.; Kalashnikov, V.L.; Apolonski, A.; Krausz, F. High-power 200 fs Kerr-lens mode-locked Yb:YAG thin-disk oscillator. Opt. Lett. 2011, 36, 4746–4748, doi:10.1364/OL.36.004746.
[62]  Pronin, O.; Brons, J.; Grasse, C.; Pervak, V.; Boehm, G.; Amann, M.C.; Apolonski, A.; Kalashnikov, V.L.; Krausz, F. High-power Kerr-lens mode-locked Yb:YAG thin-disk oscillator in the positive dispersion regime. Opt. Lett. 2012, 37, 3543–3545, doi:10.1364/OL.37.003543.
[63]  Baer, C.R.E.; Kr?nkel, C.; Saraceno, C.J.; Heckl, O.H.; Golling, M.; Südmeyer, T.; Peters, R.; Petermann, K.; Huber, G.; Keller, U. Femtosecond Yb:Lu2O3 thin disk laser with 63 W of average power. Opt. Lett. 2009, 34, 2823–2825, doi:10.1364/OL.34.002823.
[64]  Saraceno, C.J.; Schriber, C.; Heckl, O.H.; Baer, C.R.E.; Golling, M.; Beil, K.; Kr?nkel, C.; Südmeyer, T.; Huber, G.; Keller, U. 25 W, 185 fs Pulses from an Yb:Lu2O3 Modelocked Thin Disk Laser. In Proceedings of Europhoton 2012—5th EPS-QEOD EUROPHOTON CONFERENCE, Stockholm, Sweden, 26–31 August 2012.
[65]  Palmer, G.; Schultze, M.; Siegel, M.; Emons, M.; Bünting, U.; Morgner, U. Passively mode-locked Yb:KLu(WO4)2 thin-disk oscillator operated in the positive and negative dispersion regime. Opt. Lett. 2008, 33, 1608–1610, doi:10.1364/OL.33.001608.
[66]  Brunner, F.; Südmeyer, T.; Innerhofer, E.; Paschotta, R.; Morier-Genoud, F.; Gao, J.; Contag, K.; Giesen, A.; Kisel, V.E.; Shcherbitsky, V.G.; et al. 240-fs pulses with 22-W average power from a mode-locked thin-disk Yb:KY(WO4)2 laser. Opt. Lett. 2002, 27, 1162–1164, doi:10.1364/OL.27.001162.
[67]  Saraceno, C.J.; Heckl, O.H.; Baer, C.R.E.; Golling, M.; Südmeyer, T.; Beil, K.; Kr?nkel, C.; Petermann, K.; Huber, G.; Keller, U. CW and Modelocked Operation of an Yb:(Sc,Y,Lu)(2)O(3) Thin-disk Laser. In Proceedings of 2011 Conference on Lasers and Electro-Optics (CLEO), Munich, Germany, 4 May 2011.
[68]  Wentsch, K.; Zheng, L.; Xu, J.; Abdou-Ahmed, M.; Graf, T. Passively mode-locked Yb3+:Sc2SiO5 thin-disk laser. Opt. Lett. 2012, 37, 4750–4753, doi:10.1364/OL.37.004750.
[69]  Ricaud, S.; Jaffres, A.; Wentsch, K.; Suganuma, A.; Viana, B.; Loiseau, P.; Weichelt, B.; Abdou-Ahmed, M.; Voss, A.; Graf, T.; et al. Femtosecond Yb:CaGdAlO4 thin-disk oscillator. Opt. Lett. 2012, 37, 3984–3987, doi:10.1364/OL.37.003984.
[70]  Heckl, O.H.; Kr?nkel, C.; Baer, C.R.E.; Saraceno, C.J.; Südmeyer, T.; Petermann, K.; Huber, G.; Keller, U. Continuous-wave and modelocked Yb:YCOB thin disk laser: First demonstration and future prospects. Opt. Express 2010, 18, 19201–19208, doi:10.1364/OE.18.019201.
[71]  Baer, C.R.E.; Kr?nkel, C.; Heckl, O.H.; Golling, M.; Südmeyer, T.; Peters, R.; Petermann, K.; Huber, G.; Keller, U. 227-fs pulses from a mode-locked yb:lusco3 thin disk Laser. Opt. Express 2009, 17, 10725–10730, doi:10.1364/OE.17.010725.
[72]  Saraceno, C.J.; Heckl, O.H.; Baer, C.R.E.; Golling, M.; Südmeyer, T.; Beil, K.; Kr?nkel, C.; Petermann, K.; Huber, G.; Keller, U. SESAMs for high-power femtosecond modelocking: Power scaling of an Yb:LuScO3 thin disk laser to 23 W and 235 fs. Opt. Express 2011, 19, 20288–20300, doi:10.1364/OE.19.020288.
[73]  Lochtefeld, A.J.; Melloch, M.R.; Chang, J.C.P.; Harmon, E.S. The role of point defects and arsenic precipitates in carrier trapping and recombination in low-temperature grown GaAs. Appl. Phys. Lett. 1996, 69, 1465–1467, doi:10.1063/1.116909.
[74]  Siegner, U.; Fluck, R.; Zhang, G.; Keller, U. Ultrafast high-intensity nonlinear absorption dynamics in low-temperature grown gallium arsenide. Appl. Phys. Lett. 1996, 69, 2566–2568, doi:10.1063/1.117701.
[75]  Loka, H.S.; Benjamin, S.D.; Smith, P.W.E. Optical Characterization of low-temperature-grown gaas for ultrafast all-optical switching devices. IEEE J. Quantum Electron. 1998, 34, 1426–1437, doi:10.1109/3.704335.
[76]  Lacovara, P.; Choi, H.K.; Wang, C.A.; Aggarwal, R.L.; Fan, T.Y. Room-temperature diode-pumped Yb:YAG laser. Opt. Lett. 1991, 16, 1089–1091, doi:10.1364/OL.16.001089.
[77]  H?nninger, C.; Paschotta, R.; Graf, M.; Morier-Genoud, F.; Zhang, G.; Moser, M.; Biswal, S.; Nees, J.; Braun, A.; Mourou, G.A.; et al. Ultrafast ytterbium-doped bulk lasers and laser amplifiers. Appl. Phys. B 1999, 69, 3–17, doi:10.1007/s003400050762.
[78]  H?nninger, C.; Zhang, G.; Keller, U.; Giesen, A. Femtosecond Yb:YAG laser using semiconductor saturable absorbers. Opt. Lett. 1995, 20, 2402–2404, doi:10.1364/OL.20.002402.
[79]  Uemura, S.; Torizuka, K. Kerr-lens mode-locked diode-pumped Yb:YAG laser with the transverse mode passively stabilized. Appl. Physics Express 2008, 1, doi:10.1143/APEX.1.012007.
[80]  Uemura, S.; Torizuka, K. Sub-40-fs pulses from a diode-pumped kerr-lens mode-locked yb-doped yttrium aluminum garnet laser. Jpn. J. Appl. Phys. 2011, 50, 1–3.
[81]  Kuleshov, N.V.; Lagatsky, A.A.; Shcherbitsky, V.G.; Mikhailov, V.P.; Heumann, E.; Jensen, T.; Diening, A.; Huber, G. CW laser performance of Yb and Er,Yb doped tungstates. Appl. Phys. B 1997, 64, 409–413, doi:10.1007/s003400050191.
[82]  Kuleshov, N.V.; Lagatsky, A.A.; Podlipensky, A.V.; Mikhailov, V.P.; Huber, G. Pulsed laser operation of Yb-doped KY(WO4)2 and KGd(WO4)2. Opt. Lett. 1997, 22, 1317–1319, doi:10.1364/OL.22.001317.
[83]  Kr?nkel, C.; Johannsen, J.; Peters, R.; Petermann, K.; Huber, G. Continuous-wave high power laser operation and tunability of Yb:LaSc3(BO3)4 in thin disk configuration. Appl. Phys. B 2007, 87, 217–220, doi:10.1007/s00340-007-2587-9.
[84]  Kr?nkel, C.; Peters, R.; Petermann, K.; Loiseau, P.; Aka, G.; Huber, G. Efficient continuous-wave thin disk laser operation of Yb:Ca4YO(BO3)3 in EIIZ and EIIX orientations with 26 W output power. J. Opt. Soc. Am. B 2009, 26, 1310–1314, doi:10.1364/JOSAB.26.001310.
[85]  Valentine, G.J.; Kemp, A.J.; Birkin, D.J.L.; Burns, D.; Balembois, F.; Georges, P.; Bernas, H.; Aron, A.; Aka, G.; Sibbett, W.; et al. Femtosecond Yb:YCOB laser pumped by narrow-stripe laser diode and passively modelocked using ion implanted saturable-absorber mirror. Electron. Lett. 2000, 36, 1621–1623, doi:10.1049/el:20001141.
[86]  Zaouter, Y.; Didierjean, J.; Balembois, F.; Lucas Leclin, G.; Druon, F.; Georges, P.; Petit, J.; Goldner, P.; Viana, B. 47-fs diode-pumped Yb3+:CaGdAlO4 laser. Opt. Lett. 2006, 31, 119–121, doi:10.1364/OL.31.000119.
[87]  Gomes, L.A.; Orsila, L.; Jouhti, T.; Okhotnikov, O.G. Picosecond SESAM-based ytterbium mode-locked fiber lasers. IEEE J. Sel. Top. Quant. 2004, 10, 129–136.
[88]  Ricaud, S.; Jaffres, A.; Loiseau, P.; Viana, B.; Weichelt, B.; Abdou-Ahmed, M.; Voss, A.; Graf, T.; Rytz, D.; Delaigue, M.; et al. Yb:CaGdAlO4 thin-disk laser. Opt. Lett. 2011, 36, 4134–4137, doi:10.1364/OL.36.004134.
[89]  Agnesi, A.; Greborio, A.; Pirzio, F.; Reali, G.; Au, J.A.D.; Guandalini, A. 40-fs Yb3+: CaGdAlO4 laser pumped by a single-mode 350-mW laser diode. Opt. Express 2012, 20, 10077–10082.
[90]  Greborio, A.; Guandalini, A.; Au, J.A.D. Sub-100 fs pulses with 12.5-W from Yb:CALGO based oscillators. Proc. SPIE 2012, 8235, doi:10.1117/12.906575.
[91]  Li, J.F.; Liang, X.Y.; He, J.P.; Zheng, L.H.; Zhao, Z.W.; Xu, J. Diode pumped passively mode-locked Yb:SSO laser with 2. 3ps duration. Opt. Express 2010, 18, 18354–18359.
[92]  Wentsch, K.S.; Weichelt, B.; Zheng, L.H.; Xu, J.; Ahmed, M.A.; Graf, T. Continuous-wave Yb-doped Sc2SiO5 thin-disk laser. Opt. Lett. 2012, 37, 37–39, doi:10.1364/OL.37.000037.
[93]  Liu, J.; Rico, M.; Griebner, U.; Petrov, V.; Peters, V.; Petermann, K.; Huber, G. Efficient room temperature continuous-wave operation of an Yb3+:Sc2O3 crystal laser at 1041.6 and 1094.6 nm. Phys. Stat. Sol. 2005, 202, R19–R21.
[94]  Peters, R.; Kr?nkel, C.; Petermann, K.; Huber, G. Broadly tunable high-power Yb:Lu2O3 thin disk laser with 80% slope efficiency. Opt. Express 2007, 15, 7075–7082, doi:10.1364/OE.15.007075.
[95]  Fornasiero, L.; Mix, E.; Peters, V.; Petermann, K.; Huber, G. New oxide crystals for solid state lasers. Cryst. Res. Technol. 1999, 34, 255–260, doi:10.1002/(SICI)1521-4079(199902)34:2<255::AID-CRAT255>3.0.CO;2-U.
[96]  Peters, R.; Kr?nkel, C.; Petermann, K.; Huber, G. Crystal growth by the heat exchanger method, spectroscopic characterization and laser operation of high-purity Yb:Lu2O3. J. Cryst. Growth 2008, 310, 1934–1938, doi:10.1016/j.jcrysgro.2007.10.078.
[97]  Barta, C.; Petru, F.; Hajek, B. über die Darstellung des Einkristalls von Scandiumoxid. Naturwissenschaften 1958, 45, 36–39, doi:10.1007/BF00635009.
[98]  Petermann, K.; Fornasiero, L.; Mix, E.; Peters, V. High melting sesquioxides: Crystal growth, spectroscopy, and laser experiments. Opt. Mater. 2002, 19, 67–71, doi:10.1016/S0925-3467(01)00202-6.
[99]  Petermann, K.; Huber, G.; Fornasiero, L.; Kuch, S.; Mix, E.; Peters, V.; Basun, S.A. Rare-earth-doped sesquioxides. J. Lumin. 2000, 87–89, 973–975.
[100]  Petermann, K.; Fagundes-Peters, D.; Johannsen, J.; Mond, M.; Peters, V.; Romero, J.J.; Kutovoi, S.; Speiser, J.; Giesen, A. Highly Yb-doped oxides for thin-disc lasers. J. Crys. Growth 2005, 275, 135–140, doi:10.1016/j.jcrysgro.2004.10.077.
[101]  Klopp, P.; Petrov, V.; Griebner, U.; Petermann, K.; Peters, V.; Erbert, G. Highly efficient mode-locked Yb:Sc2O3 laser. Opt. Lett. 2004, 29, 391–393.
[102]  Tokurakawa, M.; Shirakawa, A.; Ueda, K.; Yagi, H.; Yanagitani, T.; Kaminskii, A.A.; Beil, K.; Kr?nkel, C.; Huber, G. Continous wave and mode-locked Yb3+:Y2O3 ceramic thin-disk laser. Opt. Express 2012, 20, 10847–10852, doi:10.1364/OE.20.010847.
[103]  Marchese, S.V.; Baer, C.R.E.; Peters, R.; Kr?nkel, C.; Engqvist, A.G.; Golling, M.; Maas, D.J.H.C.; Petermann, K.; Südmeyer, T.; Huber, G.; et al. Efficient femtosecond high power Yb:Lu2O3 thin disk laser. Opt. Express 2007, 15, 16966–16971.
[104]  Venus, G.B.; Sevian, A.; Smirnov, V.I.; Glebov, L.B. High-Brightness Narrow-Line Laser Diode Source with Volume Bragg-Grating Feedback. Proc. SPIE 2005, 5711, doi:10.1117/12.851382.
[105]  Weichelt, B.; Voss, A.; Ahmed, M.A.; Graf, T. Enhanced performance of thin-disk lasers by pumping into the zero-phonon line. Opt.Lett. 2012, 37, 3045–3047, doi:10.1364/OL.37.003045.
[106]  Telle, H.R.; Steinmeyer, G.; Dunlop, A.E.; Stenger, J.; Sutter, D.H.; Keller, U. Carrier-envelope offset phase control: A novel concept for absolute optical frequency measurement and ultrashort pulse generation. Appl. Phys. B 1999, 69, 327–332, doi:10.1007/s003400050813.
[107]  Pekarek, S.; Südmeyer, T.; Lecomte, S.; Stefan, K.; Dudley, J.M.; Keller, U. Self-referencable frequency comb from a gigahertz diode-pumped solid state laser. Opt. Express 2011, 19, 16491–16497, doi:10.1364/OE.19.016491.
[108]  Heinecke, D.C.; Bartels, A.; Diddams, S.A. Offset frequency dynamics and phase noise properties of a self-referenced 10 GHz Ti:sapphire frequency comb. Opt. Express 2011, 19, 18440–18451, doi:10.1364/OE.19.018440.
[109]  Peters, R.; Petermann, K.; Huber, G. A New Mixed Sesquioxide Yb:LuScO3: Spectroscopic Properties and Highly Efficient Thin-Disk Laser Operation. In Advanced Solid-State Photonics; OSA Technical Digest Series: Denver, CO, USA, 2009; p. paper MC4.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133