全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

A Review of the Role of Amphiphiles in Biomass to Ethanol Conversion

DOI: 10.3390/app3020396

Keywords: lignocellulosic biomass, cellulase, enzymatic hydrolysis, pretreatment, surfactants

Full-Text   Cite this paper   Add to My Lib

Abstract:

One of the concerns for economical production of ethanol from biomass is the large volume and high cost of the cellulolytic enzymes used to convert biomass into fermentable sugars. The presence of acetyl groups in hemicellulose and lignin in plant cell walls reduces accessibility of biomass to the enzymes and makes conversion a slow process. In addition to low enzyme accessibility, a rapid deactivation of cellulases during biomass hydrolysis can be another factor contributing to the low sugar recovery. As of now, the economical reduction in lignin content of the biomass is considered a bottleneck, and raises issues for several reasons. The presence of lignin in biomass reduces the swelling of cellulose fibrils and accessibility of enzyme to carbohydrate polymers. It also causes an irreversible adsorption of the cellulolytic enzymes that prevents effective enzyme activity and recycling. Amphiphiles, such as surfactants and proteins have been found to improve enzyme activity by several mechanisms of action that are not yet fully understood. Reduction in irreversible adsorption of enzyme to non-specific sites, reduction in viscosity of liquid and surface tension and consequently reduced contact of enzyme with air-liquid interface, and modifications in biomass chemical structure are some of the benefits derived from surface active molecules. Application of some of these amphiphiles could potentially reduce the capital and operating costs of bioethanol production by reducing fermentation time and the amount of enzyme used for saccharification of biomass. In this review article, the benefit of applying amphiphiles at various stages of ethanol production ( i.e., pretreatment, hydrolysis and hydrolysis-fermentation) is reviewed and the proposed mechanisms of actions are described.

References

[1]  Yang, B.; Wyman, C.E. BSA treatment to enhance enzymatic hydrolysis of cellulose in lignin containing substrates. Biotechnol. Bioeng. 2006, 94, 611–617.
[2]  Ferreira, S.M.P.; Duarte, A.P.; Queiroz, J.A.; Domingues, F.C. Influence of buffer systems on Trichoderma reesei Rut C-30 morphology and cellulase production. Electron. J. Biotechnol. 2009, 12, 1–9.
[3]  Ma, A.Z.; Hu, Q.; Qu, Y.B.; Bai, Z.H.; Liu, W.F.; Zhuang, G.Q. The enzymatic hydrolysis rate of cellulose decrease with irreversible adsorption of cellobiohydrolase I. Enzym. Microb. Technol. 2008, 42, 543–547, doi:10.1016/j.enzmictec.2008.02.009.
[4]  Himmel, M.E.; Ruth, M.F.; Wyman, C.E. Cellulase for commodity products from cellulosic biomass. Curr. Opin. Biotechnol. 1999, 10, 358–364.
[5]  Wingren, A.; Galbe, M.; Roslander, C.; Rudolf, A.; Zacch, G. Effect of reduction in yeast and enzyme concentrations in a simultaneous-saccharification-andfermentation-based bioethanol process. Technical and economic evaluation. Appl. Biochem. Biotechnol. 2005, 121, 485–499.
[6]  Wyman, C.E. What is (and is not) vital to advancing cellulosic ethanol. Trends Biotechnol. 2007, 25, 153–157, doi:10.1016/j.tibtech.2007.02.009.
[7]  Aden, A.; Foust, T. Technoeconomic analysis of the dilute sulfuric acid and enzymatic hydrolysis process for the conversion of corn stover to ethanol. Cellulose 2009, 16, 535–545, doi:10.1007/s10570-009-9327-8.
[8]  Lynd, L.R.; Laser, M.S.; Bransby, D.; Dale, B.E.; Davison, B.; Hamilton, R.; Himmel, M.; Keller, M.; McMillan, J.D.; Sheehan, J.; Wyman, C.E. How biotech can transform biofuels. Nat. Biotech. 2008, 26, 169–172.
[9]  Dutta, A.; Dowe, N.; Ibsen, K.N.; Schell, D.J.; Aden, A. An economic comparison of different fermentation configurations to convert corn stover to ethanol using Z. mobilis and Saccharomyces. Biotechnol. Prog. 2010, 26, 64–72.
[10]  Klein-Marcuschamer, D.; Oleskowicz-Popiel, P.; Simmons, B.A.; Blanch, H.W. The challenge of enzyme cost in the production of lignocellulosic biofuels. Biotechnol. Bioeng. 2011, doi:10.1002/bit.24370.
[11]  Kazi, F.K.; Fortman, J.A.; Anexm, R.P.; Hsum, D.D.; Adenm, A.; Duttam, A.; Kothandaraman, G. Techno-economic comparison of process technologies for biochemical ethanol production from corn stover. Fuel 2010, 89, S20–S28, doi:10.1016/j.fuel.2010.01.001.
[12]  Li, J.; Li, S.-Z.; Fan, C.-Y.; Yan, Z.-P. The mechanism of polyethylene glycol (PEG) 4000 effect on enzymatic hydrolysis of lignocellulose. Colloid Surf. B 2011, 89, 203–120.
[13]  Yang, J.; Zhang, X.P.; Yong, Q.; Yu, S.Y. Three-stage hydrolysis to enhance enzymatic saccharification of steam-exploded corn stover. Bioresour. Technol. 2010, 13, 4930–4935, doi:10.1016/j.biortech.2009.09.079.
[14]  Sathitsuksanoh, N.; Zhu, Z.; Zhang, Y.-H.P. Cellulose solvent- and organic solvent-based lignocellulose fractionation enabled efficient sugar release from a variety of lignocellulosic feedstocks. Bioresour. Technol. 2012, 117, 228–233, doi:10.1016/j.biortech.2012.04.088.
[15]  Qiu, Z.; Aita, G.M.; Walker, M.S. Effect of ionic liquid pretreatment on the chemical composition, structure and enzymatic hydrolysis of energy cane bagasse. Bioresour. Technol 2012, 117, 251–256, doi:10.1016/j.biortech.2012.04.070.
[16]  Holtzapple, M.; Cognata, M.; Shu, Y.; Hendrickson, C. Inhibition of Trichoderma reesei cellulase by sugars and solvents. Biotechnol. Bioeng. 1990, 36, 275–287.
[17]  Xiao, Z.Z.; Zhang, X.; Gregg, D.J.; Saddler, J.N. Effects of sugar inhibition on cellulases and beta-glucosidase during enzymatic hydrolysis of softwood substrates. Appl. Biochem. Biotechnol. 2004, 113, 1115–1126.
[18]  Qing, Q.; Yang, B.; Wyman, C.E. Xylooligomers are strong inhibitors of cellulose hydrolysis by enzymes. Bioresour. Technol. 2010, 101, 9624–9630, doi:10.1016/j.biortech.2010.06.137.
[19]  Kim, T.H.; Lee, Y.Y.; Sunwoo, C.; Kim, J.S. Pretreatment of corn stover by low liquid ammonia recycle percolation process. Appl. Biochem. Biotechnol. 2006, 133, 41–57, doi:10.1385/ABAB:133:1:41.
[20]  Zhu, Y.M.; Kim, T.H.; Lee, Y.Y.; Chen, R.G.; Elander, R.T. Enzymatic production of xylooligosaccharides from corn stover and corn cobs treated with aqueous ammonia. Appl. Biochem. Biotechnol. 2006, 130, 586–598, doi:10.1385/ABAB:130:1:586.
[21]  Ximenes, E.; Kim, Y.; Mosier, N.; Dien, B.; Ladisch, M. Deactivation of cellulases by phenols. Enzym. Microb. Technol. 2011, 48, 54–60, doi:10.1016/j.enzmictec.2010.09.006.
[22]  Kurakake, M.; Ooshima, H.; Kato, J.; Harano, Y. Pretreatment of bagass by non-ionic surfactant for the enzymatic hydrolysis. Bioresour. Technol. 1994, 49, 247–251, doi:10.1016/0960-8524(94)90048-5.
[23]  Sonati, S.; Appu, R.A.G. Kinetic and structural studies on the interaction of surfactants with lipoxygenase L1 from soybeans (glycine max). J. Agric. Food Chem. 1993, 41, 366–371, doi:10.1021/jf00027a006.
[24]  Hayashi, Y.; Talukder, M.M.R.; Wu, J.; Takeyama, T.; Kawanishi, T.; Shimizu, N.J. Increased activity of Chromobacterium viscosum lipase in AOT reverse micelles in the presence of short chain methoxypolyethylene glycol. J. Chem. Technol. Biotechnol. 2001, 76, 844–850.
[25]  Talunder, M.M.; Takayama, T.; Hayashi, Y.; Wu, J.C.; Kawanishi, T.; Shimizu, N.; Ogino, C. Improvement of enzyme activity and stability by adding of low molecular weight polyethylene glycol to sodium bis(2-ethyl-L-hexyl) sulfosuccinate/ isooctane reverse micelles. Appl. Biochem. Biotechnol. 2003, 110, 101–111, doi:10.1385/ABAB:110:2:101.
[26]  Kumar, R.; Wyman, C.E. Effect of additives on the digestibility of corn stover solid following pretreatment by leading technologies. Biotechnol. Bioeng. 2008, 102, 1544–1557.
[27]  Erriksson, T.; Karlsson, J.; Tjerland, F. Mechanism of surfactant effect in enzymatic hydrolysis of lignocellulose. Enzym. Microb. Technol. 2002, 3, 353–364.
[28]  Borjesson, J.; Engqvist, M.; Slipos, B.; Tjerneld, F. Effect of polyethylene glycol on enzymatic hydrolysis and adsorption of cellulose enzymes to pretreated lignocellulose. Enzym. Microb. Technol. 2007, 41, 186–195, doi:10.1016/j.enzmictec.2007.01.003.
[29]  Zheng, Y.; Pan, Z.; Zhang, R.; Wang, D.; Jenkins, B. Non-ionic surfactants and non-catalytic protein. Treatment on enzymatic hydrolysis of pretreated creeping wild ryegrass. Appl. Biochem. Biotechnol. 2008, 146, 231–248, doi:10.1007/s12010-007-8035-9.
[30]  Rouimi, S.; Schorsch, C.; Valenitini, C.; Vaslin, S. Foam stability and interfacial properties of milk protein-surfactnt systems. Food Hydrocll. 2005, 19, 467–478, doi:10.1016/j.foodhyd.2004.10.032.
[31]  Tu, M.; Chandra, R.P.; Sadller, J.N. Recycling cellulase during the hydrolysis of steam exploded and ethanol pretreated lodgepole pine. Biotechnol. Prog. 2007, 65, 1130–1137.
[32]  Helle, S.S.; Duff, S.J.B.; Copper, D.G. Effect of surfactants on cellulose hydrolysis. Biotech. Bioeng. 1993, 42, 611–617.
[33]  Castanon, M.; Wilke, C.R. Effect of the surfactant Tween 80 on enzymatic hydrolysis of newspaper. Biotechnol. Bioeng. 1981, 23, 1365–1372.
[34]  Oshima, H.; Kurakake, M.; Kato, J.; Harano, Y. Enzymatic activity of cellulase adsorbed on cellulose and its change during hydrolysis. Appl. Biochem. Biotechnol. 1991, 31, 253–266, doi:10.1007/BF02921752.
[35]  Yang, B.; Wyman, C.E. Lignin Blockers and Uses Thereafter. U.S. Patent 7875444, 25 January 2011.
[36]  Eckard, A.D.; Muthukumarappan, K.; Gibbons, W. Pretreatment of extruded corn stover with polyethylene glycol to enhance enzymatic hydrolysis: Optimization, kinetics, and mechanism of action. BioEnergy Res. 2011, 5, 424–438.
[37]  Eckard, A.D.; Muthukumarappan, K.; Gibbons, W. Modeling of pretreatment condition of extrusion pretreated prairie cordgrass and corn stover with polyoxyethylen (20) sorbitan monolaurate. Appl. Biochem. Biotechnol. 2012, 167, 377–393, doi:10.1007/s12010-012-9698-4.
[38]  Ballstros, J.; Olivia, M.; Carascoa, J. Simultaneous Saccharification and Fermentation of Steam-Exploded Poplar Biomass to Ethanol. Appl. Biochem. Biotechnol. 1998, 70–72, 369–381, doi:10.1007/BF02920152.
[39]  Alkasrawi, M.; Eriksson, T.; B?rjesson, T.; Wingren, A.; Galbe, M.; Tjerneld, F.; Zacchi, G. The effect of Tween-20 on simultaneous saccharification and fermentation of softwood to ethanol. Enzym. Microb. Technol. 2003, 33, 71–78, doi:10.1016/S0141-0229(03)00087-5.
[40]  Wu, J.; Ju, L.K. Enhancing enzymatic saccharification of waste newsprint by surfactant addition. Biotechnol. Prog. 1998, 14, 649–652.
[41]  Yang, B.; Lebanon, W.; Wyman, C.E. Non-Catalytic Additives to Enhance Biodegradation of Cellulosic Biomass. U.S. Patent Provisional Application filed 2009-640-1, 22 April 2009.
[42]  Eckard, A.D.; Muthukumarappan, K.; Gibbons, W. Enhanced bioethanol production from pretreated corn stover via multi-positive effect of casein micelles. Bioresour. Technol. 2012, doi:10.1016/j.biortech.2012.07.100.
[43]  Eckard, A.D.; Muthukumarappan, K.; Gibbons, W. Evaluation of the role of polymerized micelles on yield of hydrolysis, chemical changes of biomass and cellulase structure and adsorption. Bioenergy Res. 2013. in press.
[44]  Yang, B.; Deidre, M.W.; Charles, E.W. Changes in the enzymatic hydrolysis rate of Avicel cellulose with conversion. Biotechnol. Bioeng. 2006, 94, 1122–1128.
[45]  Huyan, J.K.; Sung, B.K.; Chang, J.K. The effect of nonionic surfactants on the pretreatment and enzymatic hydrolysis of recycled newspaper. Biotechnol. Bioprocess Eng. 2007, 12, 147–151, doi:10.1007/BF03028641.
[46]  Tu, M.; Zhang, X.; Piace, M.; McFarlance, P.; Saddler, N. Effect of surfactants on separate hydrolysis fermentation and simultaneous saccharification fermentation of pretreated lodgepole pine. Biotechnol. Prog. 2009, 25, 1122–1129, doi:10.1002/btpr.198.
[47]  Taherzadeh, M.J.; Keikhosro, K. Enzyme-based hydrolysis proceses for ethanol from lignocellulosic material, a review. BioResources 2007, 2, 707–738.
[48]  Parke, J.W.; Takahata, Y.; Kajuchi, T.; Akehata, T. Effects of non-ionic surfactant on enzymatic hydrolysis of used newspaper. Biotechnol. Bioeng. 1992, 39, 117–120.
[49]  Sinitsyn, A.P.; Mitkevich, O.V.; Klesov, A.A. Inactivation of cellulolytic enzymes by stirring and their stabilization by cellulose. Prikladnaya Biokhimiya i Mikrobiologiya 1986, 22, 759–765.
[50]  Palmqvist, E.; Hahn-Hagerdel, B.; Galbe, M.; Zacchi, G. The effect of water-soluble inhibitors from steam-pretreated willow on enzymatic hydrolysis and ethanol fermentation. Enzym. Microb. Technol. 1996, 19, 470–476, doi:10.1016/S0141-0229(95)00234-0.
[51]  Xue, Y.; Jameel, H.; Park, S. Strategies to recycle enzyme and their impact on hydrolysis for bioethanol production. Bioresources 2012, 7, 602–615.
[52]  Eckard, A.D.; Muthukumarappan, K.; Gibbons, W. Enzyme recycling in a simultaneous & separate saccharification and fermentation of corn stover: Comparing polymeric micelles of surfactants and polypeptides. Bioresour. Technol. 2013, 132, 202–209.
[53]  Kaar, W.K.; Holtzapple, M.T. Benefits from Tween during enzymatic hydrolysis of corn stover. Biotechnol. Bioeng. 1998, 59, 419–427.
[54]  Seo, D.J.; Fujito, H.; Sakoda, A. Effects of a non-ionic surfactant, Tween 20, on adsorption /desorption of saccharification enzymes onto/from lignocelluloses and saccharification rate. Adsorption 2011, 17, 813–822, doi:10.1007/s10450-011-9340-8.
[55]  Lindhoud, S. Polyelectrolyte Complex Micelles as Wrapping for Enzymes. Ph.D. Thesis, Wageningen Universiteit, Wageningen, The Netherlands, September 2009.
[56]  Kim, M.H.; Lee, S.B.; Ryu, D.D.Y. Surface deactivation of cellulose and its prevention. Enzym. Microb. Technol. 1982, 4, 99–103, doi:10.1016/0141-0229(82)90090-4.
[57]  Biasutti, M.A.; Abuin, E.B.; Silber, J.J.; Correa, N.M.; Lissi, E.A. Kinetics of reactions catalyzed by enzymes in solutions of surfactants. Adv. Colloid Interface Sci. 2008, 136, 1–24, doi:10.1016/j.cis.2007.07.001.
[58]  Liu, C.; Wyman, C.E. The effect of flow rate of compressed hot water on xylan, lignin, and total mass removal from corn stover. Ind. Eng. Chem. Res. 2003, 42, 5409–5416, doi:10.1021/ie030458k.
[59]  Yang, B.; Wyman, C.E. Effect of xylan and lignin removal by batch and flowthrough pretreatment on the enzymatic digestibility of corn stover cellulose. Biotechnol. Bioeng. 2004, 86, 88–95.
[60]  Donohoe, B.S.; Decker, S.R.; Tucker, M.; Himmel, M.E.; Vinzant, T.B. Visualizing lignin coalescence and migration through maize cell walls following thermochemical pretreatment. Biotechnol. Bioeng. 2008, 101, 913–925.
[61]  Penner, M.H. Expression and measurement of enzyme activity. Curr. Protocol. Food Anal. Chem. 2001, doi:10.1002/0471142913.fac0101s00.
[62]  Allen, C.; Dos Santos, C.N.; Johnstone, S.A.; Gallagher, R.; Janoff, A.S.; Chiu, G.N.C.; Mayer, L.D.; Shu, Y.; Webb, M.S.; Li, W.M.; Bally1, M.B. Controlling the physical behavior and biological performance of liposome formulations through use of surface grafted poly(ethylene glycol). Biosci. Rep. 2002, 22, 225–249, doi:10.1023/A:1020186505848.
[63]  Steels, B.M.; Leermakers, F.A.M.; Haynes, C.A. Analysis of compression of polymer mushrooms using self-consistent field theory. J. Chroma. B 2000, 743, 31–40, doi:10.1016/S0378-4347(00)00199-7.
[64]  Pribowo, A.; Arantes, V.; Saddler, J.N. The adsorption and enzyme activity profiles of specific Trichoderma reesei cellulase/xylanase components when hydrolyzing steam pretreated corn stover. Enzym. Microb. Technol. 2012, 50, 193–205.
[65]  Chen, N.; Fan, J.B.; Xiang, J.; Chen, J.; Liang, Y. Enzymatic hydrolysis of microcrystalline cellulose in reverse micelles. 2007, 1764, 1029–1035.
[66]  Lee, J.H.; Lee, H.B.; Andrade, J.D. Blood compatibility of polyethylene oxide surfaces. Prog. Polym. Sci. 1995, 20, 1043–1079, doi:10.1016/0079-6700(95)00011-4.
[67]  Deshpande, M.V.; Eriksson, K.E.; Pettersson, L.G. An assay for selective determination of Exo-1,4,-Beta-glucanases in a mixture of cellulolytic enzymes. Anal. Biochem. 1984, 2, 481–487, doi:10.1016/0731-7085(84)80051-5.
[68]  Kim, D.W.; Jang, Y.H.; Jeong, Y.K.; Son, K.H. Effect of a nonionic surfactant on the adsorption and kinetic mechanism for the hydrolysis of microcrystalline cellulose by endoglucanase I and exoglucanase II. Bull. Korean Chem. Soc. 1997, 18, 300–305.
[69]  Steinhardt, J.; Reynolds, J.A. Multiple Equilibria in Proteins; Academic Press: New York, NY, USA, 1970.
[70]  Liu, Y.; Guo, R. Interaction between casein and sodium dodecyl sulfate. J. Colloid Interface Sci. 2007, 315, 685–692, doi:10.1016/j.jcis.2007.07.018.
[71]  Maldonado-Valderrama, J.; Rodríguez Patino, M. Interfacial rheology of protein–surfactant mixtures. Curr. Opin. Colloid Interface Sci. 2010, 15, 271–282, doi:10.1016/j.cocis.2009.12.004.
[72]  Divne, C.; Stahlberg, J.; Teeri, T.T. High-resolution crystal structures reveal how a cellulose chain is bound in the 50A long tunnel of Cellobiohydrolase I from Trichoderma reesei. J. Mol. Biol. 1998, 275, 309–325, doi:10.1006/jmbi.1997.1437.
[73]  Zhang, Y.; Zhang, Y.; Tang, L. Effect of PEG 4000 on cellulose catalysis in the lignocellulose saccharification process. J. Chem. Technol. Biotechnol. 2010, 86, 115–120.
[74]  Badley, R.A.; Carruthers, L.; Phillips, M.C. Hydrophobic free energy and the denaturation of proteins. Biochem. Biophys. Acta. 1997, 495, 110–113.
[75]  Lu, Y.; Yang, B.; Gregg, D.; Saddler, J.N.; Mansfield, S.D. Cellulase adsorption and an evaluation of enzyme recycle during hydrolysis of steam-exploded softwood residues. Appl. Biochem. Biotechnol. 2002, 100, 641–654, doi:10.1385/ABAB:98-100:1-9:641.
[76]  Sutcliffe, R.; Saddler, J.N. The role of lignin in the adsorption of cellulases during enzymatic treatment of lignocellulosic material. Biotechnol. Bioeng. 1986, 17, 749–762.
[77]  Uribe, S.; Sampedro, J.G. Measuring solution viscosity and its effect on enzyme activity. Biol. Proced. Online 2003, 5, 108–115, doi:10.1251/bpo52.
[78]  Jeon, S.I.; Andrade, J.D. Protein surface interactions in the presence of poly(ethylene oxide)2. Effects of protein size. J. Colloid Interface Sci. 1991, 142, 159–166, doi:10.1016/0021-9797(91)90044-9.
[79]  Malmstren, M.; VanAlstine, J.M. Adsorption of poly (ethylene glycol) amphiphiles to form coatings which inhibit protein adsorption. J. Colloid Interface Sci. 1996, 177, 502–512, doi:10.1006/jcis.1996.0064.
[80]  Graham, D.E.; Phillips, M.C. Proteins at liquid interfaces. V. Shear properties. J. Colloid Interface Sci. 1980, 76, 240–250, doi:10.1016/0021-9797(80)90290-8.
[81]  Dickinson, E. Adsorbed protein layers at fluid interfaces: Interactions, structure and surface rheology. Colloids Surf. B 1999, 15, 161–176, doi:10.1016/S0927-7765(99)00042-9.
[82]  Karlstrom, G. A new model for upper and lower critical solution temperature in poly ethylene oxide solusions. J. Phys. Chem. 1985, 89, 4962–4964, doi:10.1021/j100269a015.
[83]  Jacquilin, A.; Tnford, R.; Tanford, C. Binding of dodecyl sulfate to proteins at high binding ratios. Possible implications for the state of proteins in biological membranes. Proc. Natl. Acad. Sci. USA 1970, 66, 1002–1006, doi:10.1073/pnas.66.3.1002.
[84]  Viparelli, P.; Alfani, F.; Cantarella, M. Models for enzyme superactivity in aqueous solutions of surfactants. Biochem. J. 1999, 344, 765–73, doi:10.1042/0264-6021:3440765.
[85]  Larsen, J.; Henning, J. Methods for Reducing Enzyme Consumption in Second Generation Bioethanol Fermentation in the Presence of Lignin. WO Patent WO/2009/095781, 8 June 2009.
[86]  Tirosh, O.; Barenholz, Y.; Katzhender, J.; Priev, A. Hydration of polyethylene glycol-grafted liposomes. Biophys. J. 1998, 74, 1371–1379, doi:10.1016/S0006-3495(98)77849-X.
[87]  Lang, M.C.; Laupretre, F.; Noel, C.; Monnerie, L. Molecular motion of polyethylene oxide in dilute solutions studied by electron spin resonance and nuclear magnetic resonance. J. Chem. Soc. Faraday Trans. II 1979, 75, 349–355, doi:10.1039/f29797500349.
[88]  De Gennes, P.G. Conformation of polymers attached to an interface. Macromolecules 1980, 13, 1069–1075, doi:10.1021/ma60077a009.
[89]  Harder, P.; Grunze, M.; Dahint, R.; Whitesides, G.M.; Laibinis, P.E. Molecular confor- mation in oligo(ethylene glycol)-terminated self-assembled monolayers on gold and silver surfaces determines their ability to resist protein adsorption. J. Phys. Chem. B 1998, 102, 426–436.
[90]  Shashkina, J.A.; Philippova, O.E.; Zaroslov, Y.D.; Khokhlov, A.R.; Pryakhina, T.A.; Blagodatskikh, I.V. Rheology of viscoelastic solutions of cationic surfactant. Effect of added associating polymer. Langmuir 2005, 21, 1524–1530, doi:10.1021/la0482756.
[91]  Harjinder, S.; Flanagan, J. Milk Proteins. In Handbook of Food Science, Technology and Engineering; Hui, W.H., Ed.; Taylor & Francis: New York, NY, USA, 2006.
[92]  Jonstromer, M.; Strey, R. Non-ionic bilayers in dilution solutions-effect of additives. J. Phys. Chem. 1992, 96, 5993–6000, doi:10.1021/j100193a064.
[93]  Schomaker, R.; Strey, R. Effect of ionic surfactants on non-ionic bilayers-bending elasticity of weakly charged membrane. J. Phys. Chem. 1994, 98, 3908–3912, doi:10.1021/j100065a055.
[94]  Sivars, U.; BergfeltK, P.L.; Tjerland, F. Protein partitioning in weakly charged polymer-surfactant aqueous two-phase system. J. Chromatogr. B 1996, 680, 43–53, doi:10.1016/0378-4347(95)00564-1.
[95]  Naem, A.; Khan, R.H. Characterization of molten globule state of cytochrome c at alkaline, native and acidic pH induced by butanol and SDS. Int. J. Biochem. Cell Biol. 2004, 36, 2281–2292, doi:10.1016/j.biocel.2004.04.023.
[96]  Moore, B.M.; Flurkey, W.H. Sodium dodecyl sulfate activation of a plant polyphenoloxidase. J. Biol. Chem. 1990, 265, 4982–4988.
[97]  Ahl, P.L.; Bhatia, S.K.; Meers, P.; Roberts, P.; Stevens, R.; Dause, R.; Perkins, W.R.; Janoff, A.S. Enhancement of the in vivo circulation lifetime of L-α line liposomes: Importance of liposomal aggregation versus complement opsonization. Biophys. Acta. 1997, 1329, 370–382, doi:10.1016/S0005-2736(97)00129-6.
[98]  Lu, K.W.; Pérez-Gil, J.; Taeusch, H.W. Kinematic viscosity of therapeutic pulmonary surfactants with added polymers. Biochim. Biophys. Acta 2009, 1788, 632–637, doi:10.1016/j.bbamem.2009.01.005.
[99]  Yamada, Y.; Kuboi, R.; Komasawa, I. Increased activity of Chromobacterium viscosum lipase in aerosol OT reverse micelles in the presence of nonionic surfactants. Biotechnol. Prog. 1993, 9, 468–472.
[100]  Taylor, D.J.F.; Penfold, R.K.T. Polymer/surfactant interactions at the air/water interface. Adv. Colloid Interface Sci. 2007, 132, 69–110, doi:10.1016/j.cis.2007.01.002.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133