全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Identification and characterization of a novel thermostable pyrethroid-hydrolyzing enzyme isolated through metagenomic approach

DOI: 10.1186/1475-2859-11-33

Keywords: Metagenomic library, Esterase, Pyrethroid, Thermostable, Turban basin

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this study, we identified a novel pyrethroid-hydrolyzing enzyme Sys410 belonging to familyV esterases/lipases with activity-based functional screening from Turban Basin metagenomic library. Sys410 contained 280 amino acids with a predicted molecular mass (Mr) of 30.8 kDa and was overexpressed in Escherichia coli BL21 (DE3) in soluble form. The optimum pH and temperature of the recombinant Sys410 were 6.5 and 55°C, respectively. The enzyme was stable in the pH range of 4.5-8.5 and at temperatures below 50°C. The activity of Sys410 decreased a little when stored at 4°C for 10 weeks, and the residual activity reached 94.1%. Even after incubation at 25°C for 10 weeks, it kept 68.3% of its activity. The recombinant Sys410 could hydrolyze a wide range of ρ-nitrophenyl esters, but its best substrate is ρ-nitrophenyl acetate with the highest activity (772.9 U/mg). The enzyme efficiently degraded cyhalothrin, cypermethrin, sumicidin, and deltamethrin under assay conditions of 37°C for 15 min, with exceeding 95% hydrolysis rate.This is the first report to construct metagenomic libraries from Turban Basin to obtain the thermostable pyrethroid-hydrolyzing enzyme. The recombinant Sys410 with broad substrate specificities and high activity was the most thermostable one of the pyrethroid-hydrolyzing esterases studied before, which made it an ideal candidate for the detoxification of pyrethroids.Pyrethroid pesticides are synthetic analogues of pyrethrins, which are natural chemicals derived from Chrysanthemum flowers [1]. They are also used as broad-spectrum pest control agents in agricultural production, thanks to their high toxicities to insects and low toxicities to mammals [2]. Currently, organophosphorous pesticides are increasingly being replaced by pyrethroid pesticides, and the impact of the pyrethroid pesticides residual on the environment is likely to draw more attention [3,4]. Both agricultural and residential usage is continuing to grow [5], leading to the developmen

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413