全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Biomass pretreatment affects Ustilago maydis in producing itaconic acid

DOI: 10.1186/1475-2859-11-43

Keywords: Ustilago maydis, Itaconic acid, Lignocellulose, Pretreatment, Seawater, RAMOS

Full-Text   Cite this paper   Add to My Lib

Abstract:

U. maydis was characterized on shake flask level regarding its itaconic acid production on glucose. Nitrogen limitation was shown to be a crucial condition for the production of itaconic acid. For itaconic acid concentrations above 25 g/L, a significant product inhibition was observed. Performing experiments that simulated influences of possible pretreatment methods, U. maydis was only slightly affected by high osmolarities up to 3.5 osmol/L as well as of 0.1 M oxalic acid. The production of itaconic acid was achieved on pretreated cellulose in seawater and on the hydrolysed hemicellulosic fraction of pretreated beech wood.The fungus U. maydis is a promising producer of itaconic acid, since it grows as single cells (yeast-like) in submerged cultivations and it is extremely robust in high osmotic media and real seawater. Moreover, U. maydis can grow on the hemicellulosic fraction of pretreated beech wood. Thereby, this fungus combines important advantages of yeasts and filamentous fungi. Nevertheless, the biomass pretreatment does indeed affect the subsequent itaconic acid production. Although U. maydis is insusceptible to most possible impurities from pretreatment, high amounts of salts or residues of organic acids can slow microbial growth and decrease the production. Consequently, the pretreatment step needs to fit the prerequisites defined by the actual microorganisms applied for fermentation.Since fossil fuels are limited, many current research projects are investigating the utilization of renewable resources to ensure the sustainable production of biofuels and platform chemicals. Recently, most of these approaches have focused on producing alcohols from starch which competes with the food supply chain. Moreover, these approaches waste most of the plant biomass. Thus, new research is focusing on utilizing ligno-cellulose as the prime raw material for biofuel production [1] and constructing new biocatalysts for this purpose [2].Itaconic acid (C5H6O4, methylene su

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133