|
Use of the University of Minnesota Biocatalysis/Biodegradation Database for study of microbial degradationKeywords: Biodegradation database, pathway prediction, microbial degradation Abstract: Microbial degradation here refers to the microbial conversion of organic compounds, often those of that negatively impact human health, to less toxic or more useful forms, in the environment or the laboratory. Knowledge of the genes, enzymes, and pathways involved in this process help us understand environmental processes, obtain useful products, engineer remediation of polluted environments, and predict the fate of chemicals in the environment. This minireview focuses on the past ten years of research in this field; for earlier work, see [1].Hundreds of thousands of natural products are known; millions of compounds have been synthesized by organic chemists. There is no end in sight to chemical synthesis. The number of stable organic compounds that are less than 500 molecular weight are estimated to range from 1020 to 10200 [2]. Of the chemicals currently sythesized, almost 100,000 are used commercially. Most naturally-occurring molecules, and many of the synthetic ones, are transformed by at least some microbe, somewhere on the earth. How does nature handle such a vast range of compounds?Life has likely existed on Earth for at least 3.6 billion years, during which time living things have acquired the ability to catabolize almost every available carbon source. It has been estimated that there are 5 × 1030 prokaryotes on Earth [3] and every free-living prokaryote typically contain 1,000 -10,000 genes [4], making for an enzyme diversity of approximately 1034. While many of those 1032 enzymes are isofunctional, there is still enormous untapped metabolic diversity in the microbial world. For example, there are a class of antibiotics produced by Streptomyces species that contain an azoxy functional group. Until recently [5], there was no information about the enzymes that biosynthesize the azoxy group, and information is still lacking on the catabolism of azoxy groups. There are many examples in the literature of chemical groups identified in natural products for which m
|